
c - r

I - 1

Reference Manual
lommodore Business Machines, Inc.



' AMIGA INTUITION REFERENCE MANUAL

• % ,



Amiga Intuition Reference Manual

Robert J. Mical and Susan Deyl

Commodore Business Machines, Inc.

Amiga Technical Reference Series

Add ison-Wesley Publishing Company, Inc.

Reading, Massachusetts Menlo Park, California Don Mills, Ontario
Wokingham, England Amsterdam Sydney Singapore Tokyo

Madrid Bogota Santiago San Juan *—'-•



Illustr

ACKNOWLEDGMENTS

Cover by Jack Haeger
tions by Sheryl Knowles Fuller, Jack Haeger, Al McCahon, and Robert J. Mical

Programs used for the illustrations by:
Andy Finkel
Neil Katin
Dale Luck

Robert J. Mical
Jon Prince

.. Barry Walsh. _

Editing by Patria Brown and Embe Humphreys

Intuition by Robert J. Mical

DEDICATION

To Csfayn Day Havis, without whose strength and wisdom I could not have done this
— Bob



PREFACE

1 t

f

This book provides information about the Intuition user interface and is intended for
people who want to use this interface to write application programs for the Amiga.
Some familiarity with C language programming is assumed.

The first two chapters of this book are introductory in nature! Each of the next nine
chapters concentrates on some aspect of Intuition. First, each chapter presents a com-
plete description of the component in general terms. The second part of each chapter
contains complete specifications for the data structure of the component and a brief
summary of the function calls that affect the component. The last chapter contains
some important programming style guidelines.

I
Here is a brief bverview of the contents of each chapter:

Chapt
the
to

1, Introduction. A brief overview of the implementation and goals of
user interface, how the user sees an Intuition application, and an approach

Intuition.usug

Chapt sr 2, Getting Started with Intuition. A summary of Intuition components
and a | sample program that shows the header files, how to access the Intuition
library, and some fundamental Intuition structures.

r 3, Screens. Discussion of the fundamental display component of Intui-
How to use the standard screens and how to design and use screens of

Chapt
tion.
your ojwn

Chapter 4, Windows. Description of the windows through which applications
carry out their input and output. How to define and open windows according to
the nejsds ĵf your application.

Chapter 5, Gadgets. The multipurpose input devices that you can design and
attach to your windows and requesters.

Chapter 6, Menus. Designing the menu items that Intuition forms into a com-
plete menu system for your window. How the user's choices of commands and
options are transmitted to the application.

- v n -



Chapter 7, Requesters and Alerts. Description and instructions for using the
requesters, information exchange boxes that block input to the window until the
us^r responds. How to use the alerts, which are emergency communication
defvices.

Chapter 8, Input and Output Methods. When and how to use the message port
for input and the console device for input and output. How to use the message
port messages.

Chapter 9, Images, Line Drawing, and Text Using the Intuition graphics,
border and text structures. Using the graphics, border and text functions.
Introduction to using the general Amiga graphics facilities in Intuition
ap plications.

Chapter 10, Keyboard and Mouse, Using the input from the keyboard and
m^use (or other controller).

Chapter 11, Other Features. Information about the Preferences program,
features that affect the entire display, and notes for assembly language
programmers.

Chapter 12, Style. Guidelines and cautions for making the interface consistent
ar d easy to use.

Appendix A, Intuition Function Calls, contains a complete description of each
Intuition function.

Appendix B, Intuition Include File, contains the Intuition include file.

Appendix C, Internal Procedurest contains some internal Intuition procedures
for advanced users.

The glossary contains definitions of all the important terms used in the book.

You will f nd related information in the following Amiga manuals:

o AmigaDOS Reference Manual

o AmigaD OS User r8 Manual

o AmigaDOS Technical Reference Manual .

o Amiga ROM Kernel Manual

- v m -



Table of Contents

-IT "

-->-*•

Chapter 1 [INTRODUCTION 1
How the User Sees an Intuition Application 3
The Fight Approach to Using Intuition 7

i

Chapter 2 | GETTING STARTED 9
Intuition Components 9
General Program Requirements and Information 10

S1JMPLE PROGRAM: OPENING A WINDOW 11
~ SIMPLE PROGRAM: ADDING THE CLOSE GADGET 14

SIMPLE PROGRAM: ADDING THE REMAINING SYSTEM
GADGETS 15
S MPLE PROGRAM: OPENING A CUSTOM SCREEN 16
SIMPLE PROGRAM: THE FINAL VERSION 18

Chapter 3J SCREENS 23
Abovt Screens 24
Standard Screens 27

WORKBENCH 28
CustDm Screens 29

INTUITION-MANAGED CUSTOM SCREENS 30
îPPLICATION-MANAGED CUSTOM SCREENS • 30

Screen Characteristics 32
DISPLAYMODES 32
DEPTH AND COLOR 33
TYPE STYLES 34
] 3EIGHT, WIDTH, AND STARTING LOCATION 35
SCREEN TITLE ,... 37
CUSTOM GADGETS 38

Using Custom Screens 38
NEWSCREEN STRUCTURE 39
SCREEN STRUCTURE 41
SCREEN FUNCTIONS 42

Chapter A WINDOWS 45
Abc^ut Windows „ 46

WINDOW INPUT/OUTPUT „.... 48
OPENING, ACTIVATING AND CLOSING WINDOWS 49
SPECIAL WINDOW TYPES 50

- ix -



H

WINDOW GADGETS ; 53
WINDOW BORDERS 56
PRESERVING THE WINDOW DISPLAY „ 57
REFRESHING THE WINDOW DISPLAY 60
WINDOW POINTER 61
GRAPHICS AND TEXT IN WINDOWS 62
WINDOW COLORS 63
WINDOW DIMENSIONS 63

Using Windows 64
NEWWINDOW STRUCTURE 65
WINDOW STRUCTURE 70
WINDOW FUNCTIONS 71
SETTING UP A SUPERBITMAP WINDOW „ 75
SETTING UP A CUSTOM POINTER 76

Chapters GADGETS „ 81
About Gadgets 82
System Gadgets ~ ,. 83

SIZING GADGET 85
DEPTH-ARRANGEMENT GADGETS 85
DRAGGING GADGET 85
CLOSE GADGET 86

Application Gadgets 86
RENDERING GADGETS 87
USER SELECTION OF GADGETS 89
GADGET SELECT BOX 90
GADGET POINTER MOVEMENTS 91
GADGETS IN WINDOW BORDERS 92
MUTUAL EXCLUDE 92
GADGET HIGHLIGHTING 93
GADGET ENABLING AND DISABLING 94
BOOLEAN GADGET TYPE 94
PROPORTIONAL GADGET TYPE 95
STRING GADGET TYPE 99
INTEGER GADGET TYPE M „ „ 102
COMBINING GADGET TYPES 102

Using Application Gadgets 103
GADGET STRUCTURE 104
FLAGS ,.„ 107
ACTIVATION FLAGS 108
SPECIALINFO DATA STRUCTURES „ 110
GADGET FUNCTIONS m H4



Chapter 6 M E N U S /.. .:. „.— 117
A^out Menus 118

SUBMITTING AND REMOVING MENU STRIPS 120
ABOUT MENU ITEM BOXES 120
ACTION/ATTRIBUTE ITEMS AND THE CHECKMARK 122
MUTUAL EXCLUSION 123
COMMAND-KEY SEQUENCES AND IMAGERY 124
ENABLING AND DISABLING MENUS AND MENU ITEMS 125
CHANGING MENU STRIPS „... 126
MENU NUMBERS AND MENU SELECTION MESSAGES 126
HOW MENU NUMBERS REALLY WORK 128
INTERCEPTING NORMAL MENU OPERATIONS 129
REQUESTERS AS MENUS 130

Using Menus 131
MENU STRUCTURES 132
MENU FUNCTIONS 137

Chapter 7 R E Q U E S T E R S A N D ALERTS ... 139
Afcout Requesters 140

RENDERING REQUESTERS „ _.. 143
REQUESTER DISPLAY POSITION „ 143
DOUBLE-MENU REQUESTERS „ .. _ ; _ 144
GADGETS IN REQUESTERS .„ 144
IDCMP REQUESTER FEATURES m 145
A SIMPLE, AUTOMATIC REQUESTER . , _ 145

U|sing Requesters „. „. .«-...«. 147
REQUESTER STRUCTURE 147
THE VERY EASY REQUESTER. „ 151
REQUESTER FUNCTIONS .... 152

Alerts .„..„ .„. „. .................................................... 154

Chapter 8 INPUT AND OUTPUT METHODS
Ain Overview of Input and Output
About Input and Output . .
Ubing the IDCMP

INTUIMESSAGES ,„....
IDCMP FLAGS ,
SETTING UP YOUR OWN IDCMP MONITOR TASK AND USER
PORT . „.... .....
Example of the IDCMP _.

Ujsing the Console Device „
USING THE AMIGAD08 CONSOLE
USING THE CONSOLE DEVICE DIRECTLY
SETTING THE KEYMAP „ „ ,

157
157
159
164
165
167

171
172
173
174
174
176

- xi -



Chapter 9 IMAGES, LINE DRAWING, AND TEXT 179
Using Intuition Graphics 180

DISPLAYING BORDERS, INTUITEXT, AND IMAGES 181
CREATING BORDERS 181
CREATING TEXT 185
CREATING IMAGES 189
INTUITION GRAPHICS FUNCTIONS 199

Using the Amiga Graphics Primitives 200

Chapter 10 MOUSE AND KEYBOARD 203
About the Mouse 204
Mouse Messages 206
About the Keyboard 206
Using the Keyboard as an Alternate to the Mouse 208

Cha ter 11 OTHER FEATURES 211
Easy Memory Allocation and Deallocation 211

INTUITION HELPS YOU REMEMBER 212
HOW TO REMEMBER 213
THE REMEMBER STRUCTURE 213
AN EXAMPLE OF REMEMBERING 214

Preferences 214
PREFERENCES STRUCTURE 217
PREFERENCES FUNCTIONS 220

Remaking the ViewPorts .t 220
Current Time Values 221
Flashing the Display 221
Using Sprites in Intuition Windows and Screens 222
Assembly Language Conventions „ 222

Chapter 12 STYLE 223
Menu Style 224

PROJECT MENUS 224
EDIT MENUS 225

Gadget Style 226
Requester Style 227
Command Key Style 227
Mouse Style „ 229
The Sides of Good and Bad 230
^Miscellaneous Style Notes 230
A Final Note on Style 231

Appendix A Intuition Function Calls A-l

Appendix B Intuition Include File ..„ „ B-l

- xu -



Appendix C Internal Procedures

Glossary

Index

C-l

G-1

1-1

V

. t „ * -

- xm -



AMIGA INTUITION REFERENCE MANUAL



Figures

ZlS-

Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4
Figure 2-1
Figure 2-2
Figure 2-3
Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5

^Figure 3-6
Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6
Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4
Figure 6-1
Figure 6-2
Figure 6-3
Figure 6-4
Figure 7-1
Figure 7-2
Figure 7-3
Figure 8-1
Figure 8-2
Figure 8-3
Figure 8-4
Figure 8-5

A Screen with Windows 4
Menu Items and Subi tems 5
A Requester ... 6
An Alert 7
A Simple Window „ 13
A Simple Window with Gadgets , , 16
Display Created by Intui t ion 's " Hello Wor ld" Program 21
A Screen and Windows , 25
Screen and Windows with Menu List Displayed , 26
T h e Workbench Screen and the Workbench Application ... 28
Topaz Fon t in 60-column and 80-column Types 35
Acceptable Placement of Screens , 36
Unacceptable Placement of Screens 37
A High-resolution Screen and Windows , 47
System Gadgets for Windows 55
Simple Refresh , .„ „ „.... 58
Smar t Refresh 59
SuperBitMap Refresh „. 60
T h e X-Shaped Custom Pointer „ 79
System Gadgets in a Low-resolution Window ,.„,, ... 84
Hand-drawn Gadget — Unseiected and Selected „ „ „,.,. 87
Line-drawn Gadget — Unseiected and Selected ., 88
Example of Combining Gadget Types a .,„ „_..„ 102
Screen with Menu Bar Displayed „ ., ,...„„... ..... 119
Example Item Box „. „. „„... 121
Example Subi tem Box „ 122
Menu I tems with Command Key Shor tcu ts „.... ... 125
Requester Deluxe 140
A Simple Requester Made with AutoRequestQ , 14(5
Th« " O u t of Memory" Alert 154
Watching the St ream „ „.... 158
Input from the IDCMP, O u t p u t through the Graphics Primitives „„„ isi
Input and Output through the Console Device „.„ m „ __ 162
Full-system Input and Output (a Busy Program) 162
Output Only .„. .„... „.„, , . .„, _ 153

- xv -



\i '

Figure 9-1 Example of Border Relative Position , 183
Figure 9-2 Intuition's High-resolution Sizing Gadget Image 191
Figure 9-3 Example of PlanePick and PlaneOnOflF 194
Figure 9-4 Example Image — the Front Gadget 196
Figure 11-1 Intuition Remembering 212
Figure 11-2 Preferences Display 215
Figure 12-1 The Dreaded Erase-Disk Requester 226

- xvi -



T

Chapter 1

INTRODUCTION

Welcome to Intuition, the Amiga user interface.

What is a user interface? This sweeping phrase covers all aspects of getting input from
and sending output to the user. It includes the innermost mechanisms of the computer
and rises to the height of defining a philosophy to guide the interaction between man
and machine. Intuition is, above all else, a philosophy turned into software.

Intuition's user interface philosophy is simple to describe: the interaction between the
user and the computer should be simple, enjoyable, and consistent; in a word, intuitive.
Intuition supplies a bevy of tools and environments that can be used to meet this
philosophy. --

Introduction 1



if

1

Intuition was designed with two major goals in mind. The first is to give users a con-
venient, constant, colorful interface with the functions and features of both the Amiga
operating system and the programs that run in it. The other goal is to give application
designers all the tools they need to create this colorful interface and to free them of the
responsibility of worrying about any other programs that may be running at the same
time, competing for the same display and resources.

The Intuition software manages a many-faceted windowing and display system for input
and output. This system allows full and flexible use of the Amiga's powerful multitask-
ing, multi-graphic, and sound synthesis capabilities. Under the Amiga Executive operat-
ing system, many programs can reside in memory at the same time, sharing the system's
resources with one another. Intuition allows these programs to display their information
in overlapping windows without interfering with one another; in addition, it provides an
orderly way for the user to decide which program to work with at any given instant, and
how to work with that program.

Intuition is implemented as a library of C-language functions. These functions are also
available to other high-level language programmers and to assembly-language program-
mers via alternate interface libraries. Application programmers use these routines along
with simple data structures to generate program displays and to interface with the user.

A program can have full access to all the functions and features of the machine by open-
ing its own virtual terminal. When a virtual terminal is opened, your program will seem
to have the entire machine and display to itself. It may then display text and graphics
to its terminal, and it may ask for input from any number of sources, ignoring the fact
that any number of other programs may be performing these same operations. In fact,
your program can open several of these virtual terminals and treat each one as if it were
the only program running on the machine.

The user sees each virtual terminal as a window. Many windows can appear on the same
display. Each window can be the virtual terminal of a different application program, or
several windows can be created by the same program.

The Amiga also gives you extremely powerful graphics and audio tools for your applica-
tions. There are many display modes and combinations of modes (for instance, four
display resolutions, hold-and-modify mode, dual-play field mode, different color palettes,
double-buffering, and more) plus animation and speech and music synthesis. You can
combine sound, graphics, and animation in your Intuition windows. As you browse
through this book, you'll find many creative ways to turn Intuition and the other Amiga
tools into your own personal kind of interface.

2 Introduction



How the User Sees an Intuition Application

From the user's viewpoint, the Amiga environment is colorful and graphic. Application
programs can use graphics as well as text in the windows, menus, and other display
features described below. You can make liberal use of icons (small graphic objects sym-
bolic of an option, command, or object such as a document or program) to help make
the user interface clear and attractive.

The user of an Amiga application program, or of the AmigaDOS operating system, sees
the environment through windows, each of which can represent a different task or con-
text (see figure 1-1). Each window provides a way for the user and the program to
interact. This kind of user interface minimizes the context the user must remember.
The user manipulates the windows, screens (the background for windows), and contents
of the windows with a mouse or other controller. At his or her convenience, the user can
switch back and forth between different tasks, such as coding programs, testing pro-
grams, editing text, and getting help from the system. Intuition remembers the state of
partially completed tasks while the user is working on something else.

The user can change the shape and size of these windows, move them around on the
screen, bring a window to the foreground, and send a window to the background. By
changing the arrangement of the windows, the user can select which information is visi-
ble and which terminal will receive input. While the user is shaping and moving the
windows around the display, your program can ignore the changes. As far as the appli-
cation is concerned, its virtual terminal covers the entire screen, and outside of the vir-
tual terminal there's nothing but a user with a keyboard and a mouse (and any other
kind of input device, including joysticks, graphics tablets, light pens, and music
keyboards).

Screens can be moved up or down in the display, and they can be moved in front of or
behind other screens. In the borders of screens and windows there are control devices,
called gadgets, that allow the user to modify the characteristics of screens and windows.
For instance, there is a gadget for changing the size of a window and a gadget for
arranging the depth of the screens.

Introduction 3



Workbench — INTUITION Version 28,15

t (air)
fonts (dir
libs (dir

bigrcity
face
safe
transfer

1> run bigcity
tCLI 21

H Big Gi ty Woî d Pi»oces50P

sinple3
2

i

Figure 1-1: A Screen with Windows

Applications can use a variety of custom gadgets. For example, the program might use
a gadget to request that the user type in a string of characters. Another gadget might
be used to adjus^ the sound volume or the color of the screen.

At any time, onty one window is active in the sense that only one window receives input
from the user. Other windows, however, can work on some task that requires no input.
For the active window, the screen's title bar can be used to display a list of menus
(called the menu bar) at the user's command. By moving the mouse pointer along the
menu bar, the u«er can view a list of menu items for each menu category on the menu
bar. Each item in the list of menus can have its own subitem kst (see figure 1-2). ~"

4 Introduction



I Project

Save
Save As
Print
Print As
Quit,

Edit Fornat Fonts Help

iDocuMertt
. F o n t - F i l e

I

t (d|r)
fonts (dh
libs <dir3

bigci ty
face
safe
transfer

1> run biscity
ICLI 2]

Menus present lists

Figure 1-2: Menu Items and Subitems

of options and commands. The user can make choices from menus
by using the mouse pointer and buttons. Applications can also provide the user with
key-sequence shortcuts, as an alternative to the mouse. Intuition supplies certain key-
sequence shortcuts automatically.

Windows can present the user with special requester boxes, invoked by the system or by
applications (see figure 1-3). Requesters provide extended communication between the
user and the application. When a requester is displayed, interaction with that window is
halted until the use)- takes some action. The user, however, can make some other win-
dow active and deal with the requester later. If you wish, you can let the user bring up
a requester on demand.

Introduction 5



-SAVE PAINTING

PLEASE TYPE IN A PAINTING NAME
Illunination of Twilishtl

OK! CANCEL

The alert

black at

Figure 1-3: A Requester

(see figure 1-4) is another kind of special information exchange device invoked
by the system or an application. The alert display is dramatic. It appears in red and

he top of the display, with text and a blinking border. Alerts are meant to be
used when a serious problem has occurred or when the user must take some action
immediately. The application may also try to get the user's attention by flashing the
screen or Windows in a complementary color.

6 Introduction



4

ALERT: SysteH Out of Menory Error
Press Left Button to Retry Press Right Button to Abort

Guru Meditation Nunber 8x87B88BB

Figure 1-4: An Alert

The Right Approach to Using Intuition

Intuition is a Very flexible program environment, with a vast number of features and
defaults. The tools and devices are well defined and easily accessible. Although many
default values are provided for you to rely on, few restrictions are placed on you. You
are encouraged to let your creativity flow. Taking advantage of the many Intuition
features enables you to spend less time implementing user-interaction mechanisms of
your own, since Intuition already provides a wide range of them for you; in addition, the
user of your code gets to work in an environment that does not change radically from
one application to another.

For example, prou can define the windows for your program in one of the standard
screens provided by Intuition. Then you can use the standard system requesters and
gadgets and sijnple menu facilities. Alternatively, you can design a custom screen using
your own choice of modes and colors. You can use Intuition's standard imagery for your
windows and gadgets, or you can design completely custom graphics. Intuition allows
you to create your own pointer and to combine elaborate graphic images and text
strings in menu items. You can also choose to mix predefined features and custom
designs. Your creative freedom is practically limitless under Intuition.

Introduction 7



No matter how simple, complex, or fanciful your program design, it will fit within the
basic Intuition framework of windows and screens, gadgets, menus, requesters, and
alerts. The users of the Amiga will come to understand these basic Intuition elements
and to trust that the building blocks remain constant. This consistency ensures that a
well-designed program will be understandable to the naive user as well as to the sophisti-
cate. |This is the essence and the beauty of the Intuition philosophy.

8 Introduction



•*!:

Chapter 2

GETTING STARTED
WITH INTUITION

f

1

Intuition Components

Intuition*s major components are summarized in the following list.

o Windows provide the means for obtaining input from the user; they are also the
normal destination for the program's output.



E ij

r

o Screens provide the background for opening windows.

o Numerous mechanisms exist for interaction between users and applications:

o Menus present users with options and give them an easy way of entering
commands.

o Requesters provide a menu-like exchange of information.

o Gadgets are the main method of communication.

o Alerts are for emergency communications.

o The mouse is the user's primary tool for making selections and entering
commands.

o The keyboard is used for entering text and as an alternate shortcut method
of entering commands.

o Other input devices, like graphics tablets or music keyboards, provide addi-
| tional means of user input.

o The methods of program input and output are as follows:

o Input is received through the console device or Intuition Direct Communica-
tion Message Ports (known as the IDCMP).

o Output is transmitted through the console device or directly to the graphics,
text, and animation library functions.

General Program Requirements and Information

As an introduction to the basic requirements for an Intuition application, instructions
are given here for creating a simple program, which involves the following elements:

o The necessary header files must be included. Header files contain all of the
definitions of data types and structures, constants, and macros.

o Because Intuition is implemented as a library, you must declare a pointer vari-
able named IntuitionBase and call OpenLibraryQ before you can use any of
the Intuition functions.

10



t.

o You open a window by initializing the data of a NewWindow structure and
then calling OpenWindowQ with a pointer to that structure.

o You oben a screen by initializing the data of a NewScreen structure and then
calling OpenScreenQ with a pointer to that structure.

o Finally, the example program writes some simple text to a window, illustrating
how simple it is to use the graphics library with your window.

SIMPLE PROGRAM: OPENING A WINDOW

First, here is the simplest program, which does nothing more than open a plain window:

***^***********************^

• Simple OpenWindowQ program

#inchide <exec/types.h>
#include <intuition/intuition.h>
struct IntuitionBase *IntuitionBase -- =

#define INTUITION__REV 0
J MILLION 1000000

mainQ
{ j : • : -V -•

strict NewWindow NewWindow;
strict Window * Window;
LONGi;

/•Open the Intuition library. The result returned by this call is
* bsed to connect your program to the actual Intuition routines
* in ROM. If the result of this call is equal to zero, something
* is wrong and the Intuition you requested is not available, so
* your program should exit immediately

IntuitionBase = (struct IntuitionBase *)
OpenLibrary("intuition.library", INTUITIONJREV);

if (IntuitionBase === NULL) exit(FALSE);

11 1



-/* Initialize the NewWindow structure for the call to OpenWindowQ */
NewWindow.LeftEdge = 20;
NewWindow.TopEdge — 20;
NewWindow.Width *» 300;
NewWindow.Height = 100;
NewWindow.DetailPen — 0;
NewWindow.BIockPen = 1;
NewWindow.Title = "A Simple Window";
NewWindow.Flags = SMARTJREFRESH | ACTIVATE;
NewWindow.IDCMPFlags = NULL;
NewWindow.Type = WBENCHSCREEN;
NewWindow.FirstGadget = NULL;
NewWindow.CheckMark = NULL;
NewWindow.Screen — NULL;
NewWindow.BitMap = NULL;
NewWindow.Min Width == 0;
NewWindow.MinHeight = 0; _ _
NewWindow.MaxWidth = 0;
NewWindow.MaxHeight = 0;

/* Try to open the window. Like the call to OpenLibraryQ, if
* the OpenWindowQ call is successful, it returns a pointer to
* the structure for your new window.
* If the OpenWindowQ call fails, it returns a zero.

* / ' - • '

;if (( Window = (struct Window *)OpenWindow(&NewWindow)) ===== NULL)
exit(FALSE);

I* Do nothing a million times. How long do you think it will take for
* the Amiga to do nothing a million times? Try it and see!

(or (i = 0; i < MILLION; i + + ) ;

f* Finally, close the Window, and then exit */
JloseWindow(Window);

See how easy it is to create a window under Intuition? This example is a complete pro-
gram that
figure 2-1.

12

an be compiled as is. If run, this program would open the window shown in



Type Total Largest
chip 348984 347672
fast 8 8
all 348984 347672
i> download siMple.8B.ld staple
i> run i l
[CLI[31

that you wish

I -
4
si

J?

Figure 2-1: A Simple Window

The Type variable in NewWindow describes the screen type you want for this win-
dow. With the Type variable set to WBENCHSCREEN, you are specifying to Intuition

this window to open in the Workbench screen. With the Flags variable
initialized to SMAIttVREFRESH and ACTIVATE, you are specifying that you want
this window to take advantage of Intuition's SMART_REFRESH mode of window
display and yo i want this window to become the active window when it opens. The rest
of the NewWindow variables are set to simple, safe default values. Consequently, you
cannot do much with this window.

i-

13



SEMPIjE PROGRAM: ADDING THE CLOSE GADGET

The next program allows you to close the window when you like, rather than having it
close automatically.

First, the program asks Intuition to attach a WINDOWCLOSE gadget. Then Intuition is
instructed to tell the program when someone activates that WINDOWCLOSE gadget.

To ask for the WINDOWCLOSE gadget, change the Flags variable to include the
WINDOWCLOSE flag:

NewWindow.Flags = WINDOWCLOSE | SMARTJIEFRESH | ACTIVATE;

Asking Intuition to tell the program that the gadget has been activated requires several
steps:

ntuition must be told to inform the program about the event;

ntuition must wait for the event to happen;

Vhen the event occurs, Intuition must know to close the window and exit.

You instifuct Intuition to tell the program about the event by specifying one of the event
flags in the IDCMPFlags variable. As mentioned earlier, the IDCMP is Intuition's
Direct Communications Message Port system. By setting one of the IDCMP flags, you
are requesting Intuition to open a pair of message ports through which the program may
communicate.

/* Tell the program about CLOSEWINDOW events */
NewWindow.IDCMPFlags = CLOSEWINDOW;

Finally, rather than counting to a million and then closing the window, here's how the
program "jvaits for the CLOSEWINDOW event before closing the window:

Wait(l << Window->UserPort->mpJ5igBit);
Close Window(Window);
exit(TRUE);

The variables UserPort and mpJSigBit are initialized for you by Intuition, so you can
ignore these for now. WaitQ is a function of the Amiga Executive. It allows your pro-
gram to do absolutely nothing, thereby freeing the processor for other jobs, until some

14



special event occurs. In this simple example, only one type of event will wake up the
program; thus when the program is awakened, it can automatically assume that it was
because someone pressed the WINDOWCLOSE gadget. When you start using the
IDCMP for more elaborate functions, your programs will have to get a message from the
message port and examine it to see what event has occurred to awaken the program.

SIMPLE PROGRAM: ADDING THE REMAINING SYSTEM GADGETS

Next, try attaching all of the system gadgets to your window:

NewWindow.Flags = WINDOWCLOSE | SMARTJREFRESH
| ACTIVATE | WINDOWDRAG | WINDOWDEPTH .
| WINDOWSIZING | NOCAREREFRESH;

The WINDOWDRAG flag means that you want to allow the user to drag this window
around the screen. If you do not set this flag, the window cannot be moved.

The WINDOWDEPTH flag specifies that the user can arrange the depth of this window
with respect to other windows in the same screen. Having set this flag, you can now
send this window behind all other windows or bring it in front of all other windows.

The WINDOWSIZING flag means that you want to allow the user to change the size of
this window. This has two implications. First, resizing a window can sometimes require
even SMARTJtEFRESH windows to be refreshed (to refresh a window means to
redisplay the information contained in that window). If you really do not care about
whether you should refresh your window (as is the case here) then you can set the
NOCAREREFRESH flag and Intuition will take care of all the refresh details for you.
Because this example allows the window to be sized now, it must tell Intuition about the
minimum and maximum sizes for the window:

New Window.Min Width = 100;
NewWindow-MinHeight = 25;
NewWindow.MaxWidth == 640;
NewyVindow.MaxHeight = 200;

If you run the program with these changes, your window will look like figure 2-2.

15



1624:
£JA Simple Window

T y p e T o t a l L a r g e s t
chip 34B9B4 347672
fast 6 6
all 348904 347672
1> download staple.82.Id sihple2
1> run
[CLI 3J

Figure 2-2: A Simple Window with Gadgets

SIMPLE PROGRAM: OPENING A CUSTOM SCREEN

To open a custom screen, you must initialize a NewScreen block of data and then call
OpenScreenQ with a pointer to that data.

To open the window in the earlier example, you initialized a NewWindow structure by
writing a long series of assignment statements. A more compact method for initializing a
structure is used here to open a custom screen.

16



/* This font declaration will be used for the new screen */
struct TextAttr MyFont =

{
"topaz.font",
TOPAZJSIXTY,
FS_NORMAL,
FPF_ROMFONT,

/* Font Name */
/* Font Height */
/* Style */
/* Preferences */

#-"

* • • !

/* This is the declaration of a pre-initialized NewScreen data block.
* It often requires less work and uses less code space to
* pre-initialize data structures in this fashion.
* / -

struct NewScreen NewScreen =

0,
o,
320,
200,
2,
0 ,1 ,
NULL,
CUSTOMSCREEN,
&MyFont,
"My Own Screen",
NULL,
NULL,

/* the LeftEdge should be equal to zero */_
/* TopEdge */
/* Width (low-resolution) */
/* Height (non-interlace) */
/* Depth (4 colors will be available) */
/* the DetailPen and BlockPen specifications */
/* no special display modes */
/* the screen type */
/* use my own font */
/* this declaration is compiled as a text pointer */
/* no special screen gadgets */
/* no special CustomBitMap */

Here's how the screen is opened:

if (( Screen = (struct Screen *)OpenScreen(&NewScreen) ) = NULL)
exit(FALSE);

Because this window will open in a custom screen, you must change the initialization of
the NewWindow data slightly. The Type declaration should be changed from
WBENCHSCREEN to CUSTOMSCREEN. Also, you previously set the Screen vari-
able to NULL because you wanted the window to open in the Workbench screen. Now,
you must set this variable to point to the new custom screen:

vv:

17



NewWindow.Type = CUSTOMSCREEN;
New Window.Screen = Screen;

After you close the window, close the screen, too:

CloseScreen(Screen);

The program now opens a custom screen and then opens a window in that screen.

SIMPLE PROGRAM: THE FINAL VERSION

For a finishing touch, try writing a bit of text to the new window. This will require
another declaration, another call to OpenLibrary(), and a call to the graphics library's
MoveQ and TextQ functions:

struct GfxBase *GfxBase;
. GfxBase = OpenLibraryf'graphics.library", GRAPHICSJtEV);

Move(Window->RPort, 20, 20);
Text(Window->RPort, "Hello World", 11);

All together, the finished program looks like the following:

*
* "Hello World"

#include <exec/types.h>
#include < in tuition/in tuition.h>

struct IntuitionBase *IntuitionBase;
struct GfxBase *GfxBase;

#define INTUITIONJIEV 0
#define GRAPHICS_JtEV 0

struct TextAttr MyFont =

18



- ' % •

"topaz.font",
TOPAZ_SIXTY,
FSJMORMAL,
FPFJROMFONT,

/* Font Name */
/* Font Height */
/* Style */
/* Preferences */

/* This is the declaration of a pre-initialized NewScreen data block.
* It often requires less work and uses less code space to
* pre-initialize data structures in this fashion.
* /

struct NewScreen NewScreen =

/* the LeftEdge should be equal to zero */
/* TopEdge */
/* Width (low-resolution) */
/* Height (non-interlace) */
/* Depth (4 colors will be available) */
/* the DetailPen and BlockPen specifications */
/* no special display modes */
/* the screen type */
/* use my own font */
/* this declaration is compiled as a text pointer */
/* no special screen gadgets */
/* no special CustomBitMap */

J. -

-

- -

1*

£

o,
o,
320,
200,
2,
0, 1,
NULL,
CUSTOMSCREEN,
&MyFont,
"My Own Screen",
NULL,
NULL,

mainQ

struct Screen *Screen;
struct NewWindow NewWindow;
struct Window *Window;
LONGi;

/* Open the Intuition library. The result returned by this call is
* used to connect your program to the actual Intuition routines
* in ROM. If the result of this call is equal to zero, something
* is wrong and the Intuition you requested is not available, so
* your program should exit immediately
* /

IntuitionBase = (struct IntuitionBase *)
OpenLibraryf'intuition.library", INTUITIONJtEV);

if (IntuitionBase == NULL) exit(FALSE);

19



GfxBase = (struct GfxBase *)OpenLibrary("graphics.library", GRAPHICS.REV);
if (GfxBase ===== NULL) exit(FALSE);

if ((Screen = (struct Screen *)OpenScreen(&NewScreen)) ===== NULL)
exit(FALSE);

NewWindow.LeftEdge = 20;
NewWindow.TopEdge = 20;
NewWindow.Width = 300;
NewWindow.Height = 100;
NewWindow.DetailPen = 0;
NewWindow.BlockPen = 1;
NewWindow.Title = "A Simple Window";
NewWindow.Flags « WINDOWCLOSE | SMARTJtEFRESH 1 ACTIVATE

| WINDOWSIZING | WINDOWDRAG | WINDOWDEPTH | NOCAREREFRESH;
NewWindow.IDCMPFlags = CLOSEWINDOW;
NewWindow.Type = CUSTOMSCREEN; __ _ '
NewWindow,FirstGadget = NULL;
NewWindow.CheckMark = NULL; „.._ ...._ — — •-•-
NewWindow.Screen = Screen;
NewWindow.BitMap = NULL;
NewWindow.Min Width = 100;
NewWindow.MinHeight = 25;
Ne w Win dow.Max Width = 640;
NewWindow.MaxHeight = 200;

if (( Window = (struct Window *)OpenWindow(&NewWindow)) == NULL)
exit(FALSE);

Move(Window->RPort, 20, 20); : : :
Text(Window->RPort, "Hello World", 11);

Waitfl « Window->UserPort->mp_SigBit);
Close Window(Window);
CloseScreen(Screen);
exit(TRUE);

The display created by the final version looks like figure 2-3.

20



My Own Screen_

• A Si up!e w1ndow
Hello Horid

Figure 2-3: Display Created by Intuition's " Hello World" Program

21





1

Chapter 3

SCREENS

Screens are the basis for all Intuition displays. They set up the environment for overlap-
ping windows and they give you easy access to all the Amiga display modes and graphics
features. In this chapter you will learn how to use the standard screens provided by
Intuition and how to create your own custom screens.

Screens 23



About Screens

The screen is Intuition's basic unit of display. By using an Intuition screen, you can
create a video display with any combination of the many Amiga display modes. Certain
basic parameters of the video display (such as fineness of vertical and horizontal resolu-
tion, number of colors, and color choices) are defined" by these modes. By combining
modes, you can have many different types of displays. For example, the display may
show eight different colors in low-resolution mode or 32 colors in interlaced mode (high
resolution of lines). For a description of all the different display modes, see the "Custom
Screens" section below*

Every other Intuition display component is defined with respect to the screen in which it
is created. Each screen's data structure contains definitions that describe the modes for
the particular screen. Windows inherit their display parameters from the screens in
which they open, so a window that opens in a given screen always has the same display
modes and colors as that screen. If your program needs to open windows that differ
from one another in their display characteristics, you can open more than one screen.

Screens are always the full width of the display. This is because the Amiga hardware
allows very flexible control of the video display, but imposes certain minor restrictions.
Sometimes it is not possible to change display modes in the middle of a scan line. Even
when it is possible, it is usually aesthetically unpleasant or visually jarring to do so. To
avoid these problems, Intuition imposes its own display restriction, allowing only one
screen (one collection of display modes) per video line. Because of this, screens can be
dragged vertically but not horizontally. This allows screens with different display modes
to overlap, but prevents any changes in display mode within a video line.

Screens provide display memory, which is the RAM in which all imagery is first rendered
and then translated by the hardware into the actual video display. The Amiga graphics
structure that describes how rendering is done into display memory is called a
RastPort . The Ras tPor t also has pointers into the actual display memory locations.
The screen's display memory is also used by Intuition for windows and other high-level
display components that overlay the screen. Application programs that open custom
screens can use the screen's display memory in any way they choose.

Screens are rectangular in shape. When they first open they usually cover the entire sur-
face of the video display, although they can be shorter than the height of the display.
Like windows, screens can be moved up or down and arranged at different depths by
using special control mechanisms called gadgets. Unlike windows, however, screens can-
not be made larger or smaller, and they cannot be moved left or right.

24 Screens



The dragging and depth-arrangement gadgets reside in the title bar at the top of all
Intuition screens. In the title bar there may also be a line of text identifying the screen
and its windows.

Figure 3-1 shows a screen with open windows. The depth-arrangement gadgets (front
gadget and back gadget) are at the extreme right of the screen title bar. The drag
gadget (for moving the screen) occupies the entire area of the screen title bar not occu-
pied by other gadgets. The user changes the front-to-back order of the displayed screens
by using a controller (such as a mouse) or the keyboard cursor control keys to move the
Intuition pointer within one of the depth-arrangement gadgets. When the user clicks the
left mouse button (known as the select button), the screen's depth arrangement is
changed.

Anisa.Workbench — INTUITION .Version-28,15

Hririn

frags

New CLI task 3
3> snoop
Alloc/Free Meworv Snooper 82

juiioise cal ler ' s stack

RETURN) to qu i t . . .

prefs
safe
snoop

Available Menory
Type Total Largest
chip 386888 301123
fast 8 8
ail 386888 381128

El

Figure 3-1: A Screen and Windows

The user moves the entire screen up or down on the video display by moving the pointer
within the drag gadget, holding down the left mouse button while moving the pointer,
and finally releasing the button when the screen is in the desired location.

The screen's title bar is also used to display a window's menus when the user asks to see
them. Typically, when the user presses the right mouse button (the menu button), a list
of menu topics called a menu list appears across the title bar. Figure 3-2 shows a screen
after the user has displayed the menu list. ~

Screens 25



Colors Special
All rights
Version 21
CLI Versic
Use date t
Date DD-MK
Thursday i
1) dip

c (dir)
1 (dir)
devs (dip!
s (dir)
t Cdir)
fonts (di;
libs (dip!

debug
ideno
test

i> run ideno
[CLI 2J

Brushes
^NOT QUIIE THE EYEBALL ©R
ALHOST THE EYEBALL ©J

WU» V W

face
safe
transfer

Figure 3-2: Screen and Windows with Menu List Displayed

By further mouse movement and mouse button manipulation, the user can see a list of
menu items and subitems for each of the topics in the menu list. The menu list, menu
items, and subitems that are displayed pertain to the currently active window, which is
the window receiving the user's input. Only one window is active at any time. The
screen containing the active window can be thought of as the active screen. Because
there is only one active window, there can be only one active menu list at a time. The
menu list appears on the title bar of the active screen. Menus are handled by the
Intuition menu system. See chapter 6, "Menus," for more information about putting
menus together and attaching them to windows.

Both you and the user will find working with screens much like working with
windows—for you, the data structures and the functions for manipulating screens and
windows are similar. For the user, moving and arranging screens will require the same
steps as moving and arranging windows. However, the user will be less aware of screens
than of windows, since user input and application output occur mostly through windows.

There are two kinds of screens—standard screens supplied by Intuition and custom
screens created by you.

26 Screens



Standard Screens

Standard screens differ from custom screens in three basic ways.

o Standard screens close and disappear if all their windows are closed. Only the
Workbench standard screen (described below) differs in this regard. You can
think of the Workbench as the default screen—even if all its windows close, it
remains open. If the Workbench isn't already open when all other screens close,
it will open then.

o Standard screens are opened differently. No function need be called to explicitly
open a standard screen. You simply specify the screen type in the window
structure; if the screen is not already open, Intuition opens it. This is con-
trasted with custom screens, which you must explicitly open before opening a
window in the screen.

o You are free to design and change the characteristics of your custom screen
practically any way you choose, but you should not change the colors, display
modes, and other parameters of standard screens. These parameters have been
predefined so that more than one application may open windows in a standard
screen and be able to depend upon constant display characteristics. For
instance, a business package that runs in a standard screen may expect the
colors to be reasonable for a dither pattern in a graph. If you change the colors,
that program's graphics display will not be able to share the screen with you,
which defeats the purpose of standard screens.

All of Intuition's standard screens are the full height and width of the video display
area. Intuition manages standard screens and any program may open its windows in
any of the standard screens. An application can display more than one window in a
standard screen at the same time, and more than one application can open a window in
a standard screen at the same time. - —

The standard screens currently available are:

o Workbench

o Others, as described in appendix B: "Intuition Include File."

Screens 27



WORKBENCH

The Workbench is the Intuition standard screen. It is both a screen and an application.
It is a high-resolution (640 pixels x 200 lines) four-color screen. The default colors are
blue for the background, white and black for details, and orange for the cursor and
pointer (see figure 3-3).

Aniga workbench. Version 29/31, 244352 free-nenory

o
clack preferences

Figure 3-3: The Workbench Screen and the Workbench Application

The Workbench screen is used by both the Amiga Command Line Interface (CLI) and
the Workbench tool. If you want to use the Workbench as a screen for the windows of
your program, you just specify a window type of WBENCHSCREEN in the data struc-
ture called NewWindow, which you initialize when opening a window. —

Any application program can use the Workbench screen for opening its windows.
Developers of text-oriented applications are especially encouraged to open in the Work-
bench screen. This is convenient for the user because many windows will open in the
same standard screen, requiring less movement between screens. Using the Workbench
screen is very memory-efficient, because you will not be allocating the memory for your
own custom screen.

Besides your own custom sereen, the Workbench screen is the only one that you can
explicitly close. Also, the Workbench screen does not close when all the windows in it
are closed, as do the other standard screens, and it automatically reopens when all other
screens close down. _ — ".—•

28 Screens



If your application needs more memory than what is available, it can attempt to reclaim
the memory used by the Workbench screen by calling CloseWorkBenchQ. You
should, however, call OpenWorkBench() as your program exits. It is good Intuition
programming practice to always attempt to reopen the Workbench screen when your
program is terminating, whether or not you called CloseWorkBenchQ. If all programs
do this, it will help to present the user with as consistent and dependable an interface as
possible, since the Workbench screen will be available as much as possible.

The Workbench application program allows users to interact with the Amiga file system,
using icons (small graphics images) to represent files. Intuition treats the Workbench
application as a special case, communicating with it in extraordinary ways. For exam-
ple, you can open or close the Workbench screen by calling the Intuition functions
OpenWorkBench() and CloseWorkBenchQ, even though the Workbench tool may
have open windows in the screen. - - - -

You have access to a body of library functions that allows you to create and manipulate
the Workbench application's objects and iconography. The functions in the library
allow you to create disk files that the user can handle within the context of the Work-
bench program. For more information about the Workbench library, see the AmigaDOS
Developer's Manual.

The user can change the colors of the Workbench screen via the Preferences program.
For more information about Preferences, see chapter 11, "Other Features."

Custom Screens

Typically, you create your own screen when you need a specific kind of display that is
not offered as one of the standard screens or when you want to modify the screen or its
parameters directly—as in changing colors or directly modifying the Copper list or
display memory. The Copper is the display-synchronized coprocessor that handles the
actual video display by directly affecting the hardware registers. For example, you
might need a display in which you can have movable sprite objects. Alternatively, you
might have your own display memory that you want to use for the screen's display
memory or you may want to allow the user to play with the colors of a display that
you've created. If you want to do these sorts of things, you'll have to create a custom
screen; such operations not allowed in standard screens.

Custom screens do not close automatically when all windows in them close (as system
standard screens do, except for the Workbench). If you have opened a custom screen,
you must call CloseScreenQ before your program exits. Otherwise, your screen stays
around forever.

Screens 29



You can create two kinds of custom screens: one that is entirely managed by Intuition
or one that uses the Amiga graphics primitives to write directly into the display memory
or otherwise directly modify the screen display characteristics. If the second kind of
screen is used, you must take on some of the responsibility of managing the display.

INTUITION-MANAGED CUSTOM SCREENS

If you want Intuition to manage your custom screen, you still have a great deal of lati-
tude in creating custom effects. You can set any or all of the following screen
parameters:

o Height of the screen and starting point of the screen when it first opens.

o Depth of the screen, which determines how many colors you can use for the
display.

o Choice of the available colors for drawing details, such as gadgets, and for doing
block fills, such as the title bar area.

o Display modes—high or low resolution, interlaced or non-interlaced, sprites, and
dual playfields.

o Initial display memory.

You can also use the special Intuition graphics, line, and text structures and functions
within the windows in your custom screen. See chapter 9, "Images, Line Drawing, and
Text," for details about these.

APPLICATION-MANAGED CUSTOM SCREENS

In an application-managed custom screen, the same structures and functions are used,
but another dimension is added when you access the display memory directly. You can
now use all of the Amiga graphics primitives to do any kind of rendering you want. You
can do color animation, scrolling, patterned line drawing and patterned fills, and much
more. Although you can still combine such a screen with other Intuition features — for
example, windows, menus, and requesters—certain interactions can trash the display.
The interactions described in the next paragraph are those that take place when you
write to thp custom screen while windows and menus are being displayed and moved
over the scijeen. . „ ? ; ~. "? *

30 Screens



First, Intuition does not save background screen information when a window is opened,
sized, or moved. Screen areas that are subsequently revealed are restored to a blank
background color, obliterating any data you write into the display memory area of your
screen. Second, menus are protected from data being output to the windows behind
them but not from data being output to screens. When a menu is on the screen, all
underlying windows are locked against graphical output to prevent such output from
trashing the menu display. Menus cannot, however, lock graphical output to the display
memory of a screen. Therefore, be careful about writing to a screen that has or can
have menus displayed in it. You can easily overstrike the menus and obliterate the
information contained in them.

In summary, keep in mind that the user can modify the display by moving things
around (by using window gadgets) or making things appear aad disappear (menus and
requesters). If you want to write directly to a custom screen's display memory, you have
to design the pieces carefully so that they interact without conflict, If you want com-
plete control of the screen display memory and are willing to give up some windowing
capabilities (such as menus and window sizing and dragging), you should use a custom
screen. If you want to control the display memory and run windows and menus in the
custom screen, you need to deal with the hazards. Always bear In mind that playing
with screen displays in this way requires an intricate knowledge of how screens and win-
dows work, and you should not attempt it lightheartedly.

What if you want a screen with your own display memory, one you can manipulate any
way you choose, but you still want access to all the wiadowing and menu capabilities
without worry? A special kind of window satisfies all of these needs—the Backdrop
window, which always stays in the background aad can be fashioned to fill the entire
display area. Writing to this kind of window is almost as flexible as writing directly to
display memory and requires only a little more overhead in memory management and
performance. Menus and ordinary windows can safely reside over this window. You can
also cause the screen's title bar to disappear behind a Backdrop window by calling the
ShowTitle() function, thereby filling the entire video display with your display
memory. This is the Intuition-blessed way to fill the entire display and still exist in an
Intuition environment. For more information about setting up Backdrop windows, see
chapter 4, "Windows."

When you are using the graphics primitives (functions) in your custom screen, the func-
tions sometimes require pointers to the graphics display memory structures that lie
beneath the Intuition display. These graphics structures are the RastPort, ViewPort,
and View. For more information and details about how to get the pointers into the
display memory, see chapter 9, "Images, Line Drawing, and Text,"

4

i*.

Screens 31



Screen Characteristics

The following characteristics apply to both standard screens and custom screens. Keep
in mind, however, that you should not change the characteristics of any of the standard
screens.

DISPLAY MODES

You can use any or all of the following display modes in your custom screens. The win-
dows that open in a screen inherit the screen's display modes and colors.

There are two modes of horizontal display: low resolution and high resolution. In low-
resolution mode, there are 320 pixels across a horizontal line. In high-resolution mode,
there are 640 pixels across. A pixel is the smallest addressable part of the display and
corresponds to one bit in a bit-plane. Twice as much data is displayed in high-resolution
mode. Low-resolution mode gives you twice as many potential colors, 32 instead of 16.

Thefe are two modes of vertical display: interlaced and non-interlaced. You can have
200 vertical lines of display in non-interlaced mode and 400 lines in interlaced mode.
Twice as much data is displayed in interlaced mode. Typically, applications use non-
interlaced mode, which requires half as much memory and creates a display that does
not have the potential for flickering, as interlaced displays tend to do. Intuition sup-
ports interlaced mode because some applications will want to use it; for instance, a
computer-aided design package running on a high-phosphor-persistence monitor will
want to use it.

In sprite mode, you can have up to eight small moving objects on the display. You
define sprites with a simple data structure and move them by specifying a series of x,y
coordinates. Sprites can be up to sixteen bits wide and any number of lines tall, can
have three colors (plus transparent), and pairs of sprites can be joined to create a
fifteen-color (plus transparent) sprite. They are also reusable vertically, so you can
really have more than eight at one time. The Amiga GELS system described in the
Amiga ROM Kernel Manual provides just such a multiplexing, or interleaving, of sprites
for you. Chapter 4, "Windows," contains a brief description of a sprite used as a cus-
tom pointer.

Dual-playfield mode is a special display mode that allows you to have two display
memories. This gives you two separately controllable and separately scrollable entities
that you can display at the same time, one in front of the other. With this mode, you
can have some really interesting displays, because wherever the front display has a pixel
that selects color register 0, that pixel is displayed as if it were transparent. You can see
through these transparent pixels into the background display. In the background

32 Screens



display, wherever a pixel selects color register 0, that pixel is displayed in whatever color
is in color register 0.

ffold-and-modify mode gives you extended color selection.

If you want to use sprites, dual playfields, or hold-and-modify mode, you should read
about all of their features in the Amiga ROM Kernel Manual.

6 DEPTH AND COLOR

Screen depth refers to the number of bit-planes in the the screen display. This affects
the colors you can have in your screen and in the windows that open in that screen.

Display memory for a screen is made up of one or more of bit-planes, each of which is a
contiguous series of memory words. When they are displayed, the planes are overlapped
80 that each pixel in the final display is defined by one bit from each of the bit-planes.
For instance, each pixel in a three-bit-plane display is defined by three bits. The binary
number formed by these three bits specifies the color register to be used for displaying a
color at that particular pixel location. In this case, the color register would be one of the
eight registers numbered 0 through 7. The thirty-two system color registers are com-
pletely independent of any particular display. You load colors into these registers by

ifying the amounts of red, green, and blue that make up the colors. To load colors
into the registers, you use the graphics primitive SetRGB4(). Table 3-1 shows the rela-
tionship between screen depth, number of possible colors in a display, and the color
registers used.

Table 3-1: Screen Depth and Color

Maximum Color Register
Depth Number of Colors Numbers

2
4
8
16
32

0-1
0-3
0-7
0-15
0-31

The maximum number of bit-planes in a screen depends upon two of the display
modes—dual playfields and hold-and-modify. For a normal display you can have from
one to five bit-planes. For dual playfields, you can have from two to six bit-planes,
which are divided between the two playfields. For hold-and-modify mode you need six
bit-planes.

Screens 33



.1-

The color registers are also used for the "pen" colors. If you specify a depth of 5, for
instance, then you also have 32 choices (in low-resolution mode) for the DetailPen and
BlockPen fields in the structure. DetailPen is used for details such as gadgets and
title bar text. BlockPen is used for block fills, such as all of the title bar area not
taken up by text and gadgets.

TYPE STYLES

.
When you open a custom screen, you can specify a text font for the text in the screen
title bar and the title bars of all windows that open in the screen. A font is a
specification of type size and type style. The system default font is called "Topaz."
Topaz is a fixed-width font and comes in two sizes:

o Eight display lines tall with 80 characters per line in a 640-pixel high-resolution
display (40 characters in low resolution).

o Nine display lines tall with 64 characters per line in a high-resolution display (32
characters in low resolution).

On a television screen, you may not be able to see all 640 pixels across a horizontal line.
On any reasonable television, however, a width of 600 pixels is a safe minimum, so you
should be able to fit 60 columns of the large Topaz font. Note that font is a Preferences
item and the user can choose either the 80- or 60-column (8- or 9-line) default, whichever
looks best on his or her own monitor (see figure 3-4). You can use or ignore the user's
choice of default font size. See chapter 11, "Other Features," for more information
about Preferences items.

34 Screens



SiHple Window
This t e x t is in TOPAZ-SIXTY Font

text is in TOPAZ-EIGHTY Font

Figure 3-4: Topaz Font in 60-column and 80-column Types

If you want the default Topaz font in the default size currently selected by the user, set
the Font field in the screen structure to NULL. If you want some other font, you
specify it by creating a TextAttr structure and setting the screen's Font field to point
to the structure. See the Amiga ROM Kernel Manual for more information about text-
support primitives.

HEIGHT, WIDTH, AND STARTING LOCATION

When you open a custom screen, you specify the initial starting location for the top line
of the screen in the TopEdge and LeftEdge fields of the screen structure. After that,
the user can drag the screen up or down. You must always set the LeftEdge field (the
x coordinate) to 0. (This parameter is included only for upward compatibility with
future versions of Intuition.)

You specify the dimensions of the screen in the Height and Width fields. You can set
the screen Height field to any value equal to or less than the maximum number of lines
m the display. For non-interlaced mode the maximum is 200 lines; for interlaced mode,
400 lines. You set the width to 320 for low-resolution mode or 640 for high-resolution
mode.

Screens 35



In setting the TopEdge and Height fields, you must take into consideration a minor
limitatbn of this release of Intuition and the graphics library. The bottom line of the
screen cannot be above the bottom line of the video display. Therefore, the top position
plus the height should not be such that the bottom line of the screen will be higher than
the bottom line of ih& video display. To illustrate, a display can look like figure 3-5, but
not like figure 3-6. A " ' **

BACK SCREEN Valid Placement of Screens

i f ' " '

Figure 3-5: Acceptable Placement of Screens

36 Screens



BACK SCREEN

•

W \ ' "''' ' '*

i

FRONT SCREEN

Invalid Placement of Screens

o

Figure 3-6: Unacceptable Placement of Screens

SCREEN TITLE

The screen title is used for two purposes: to identify the screen like an identification tab
on a file folder and to designate which window is the active one.

Although the initial screen title is set in the NewScreen structure, it can change
according to the preferences of the windows that open in the screen. Each screen has
two kinds of titles that can be displayed in the screen title bar:

o A "default" title, which is specified in the NewScreen structure and is always
displayed when the screen first opens.

o A "current" title, which is associated with the currently active window. When
the screen is first opened, the current title is the same as the default title. The
current title depends upon the preferences of the currently active window.

Screens 37



Each window can have its own title, which appears in its own title bar, and its "screen
title," which appears in the screen's title bar. When the window is the active window,
it can display its screen title in the screen's title bar. The function SetWindowTitIes()
allows you to specify, change, or delete both the window's own title and its screen title.

Screen title display is also affected by calls to ShowTitleQ, which coordinates the
display of the screen title and windows that overlay the screen title bar. Depending
upon how you call this function, the screen's title bar can be behind or in front of any
special Backdrop windows that open at the top of the screen. By default, the title bar is
displayed in front of a Backdrop window when the screen is first opened. Non-Backdrop
windows always appear in front of the screen title bar.

You can change or eliminate the title of the active screen by calling
SetWindowTitlesQ.

CUSTOM GADGETS

You cannot attach custom gadgets directly to a screen. You can attach custom gadgets
to a borderless backdrop window and monitor their activity through the window's
input/output channels. See chapter 5, "Gadgets," for information about using custom
gadgets.

Using Custom Screens

To create a custom screen, follow these steps:

1. Initialize a NewScreen structure with the data describing the screen you desire.

2. Call OpenScreen() with a pointer to the NewScreen structure. The call to
OpenScreenQ returns a pointer to your new screen (or returns NULL if your
screen cannot be opened).

3. After you call OpenScreenQ, the NewScreen structure is no longer needed. If
you have allocated memory for it, you can free this memory.

Before you create a NewScreen structure, you need to decide on the following:

o The height of the screen in lines and where on the display the screen should
begin; that is, its y position.

38 Screens



o How many colors you want; the color you want for the background; the color for
rendering text, graphics, and details such as borders; and the color for filling
block areas such as the title bar.

o Horizontal resolution (320 or 640 pixels in a horizontal line) and vertical resolu-
tion (200 in non-interlaced or 400 interlaced lines high).

o The text font to use for this screen and all windows that open in this screen.

o Text to be displayed in the screen's title bar.

o Whether you want your own display memory for this screen or you want
Intuition to allocate the display memory for you.

NEWSCREEN STRUCTURE

Here are the specifications for the NewScreen structure:

struct NewScreen

{
SHORT LeftEdge, TopEdge, Width, Height, Depth;
UBYTE DetailPen, BlockPen;
USHORT ViewModes;
USHORT Type;
struct TextAttr *Font;
UBYTE *DefaultTitle;
struct Gadget *Gadgets;
struct BitMap *CustomBitMap;

The meanings of the variables and flags in the NewScreen structure are as follows.

LeftEdge Initial x position for the screen.

This field is not currently used by Intuition; however, for upward compa-
tibility, always set this field to 0. _ • • .

TopEdge Initial y position of the screen.

Set this field to an integer or constant representing one of the lines on
the screen.

Screens 39



Width Width of the screen.

Set this field to 320 for low-resolution mode or 640 for high-resolution
mode.

Height Height of the screen in number of lines.

Set this field to up to 200 for non-interlaced mode and 400 for interlaced
mode.

Depth Number of bit-planes in the screen.

Set this field from 1 to 6.

DetailPen, BlockPen

DetailPen—color register number for details such as gadgets and text in
the title bar.

BlockPen—color register number for block fills, such as the title bar
area.

ViewModes

These flags select display modes. You can set any or all of them:

HIRES
Selects high-resolution mode (640 pixels across). The default is 320
pixels across.

INTERLACE
Selects interlaced mode (400 lines). The default is 200 lines.

SPRITES
Set this flag if you are want to use sprites in the display.

DUALPF
Set this flag if you want two playfields.

HAM
| Set this flag if you want hold-and-modify mode.

Typ<5 Set this to CUSTOMSCREEN. You may also set the CUSTOMBITMAP
flag if you want to use your own bit-map and display memory for this
screen (see CustomBitMap below).

40 Screens



i
Font A pointer to the defaujt TextAttr structure for this screen and all

Intuition-managed text that appears in the screen and its windows. Set
this to NULL if you want to use the default Intuition font.

DefaultTitle

A pointer to a null-terminated line of text that will be displayed in the
screen's title bar; this should be set to NULL if you want a blank title
bar. Null-terminated means that the last character in the text string is
NULL.

Gadgets This field is not used at this time. It should be set to NULL.

C ustomBitMap
i

A pointer to a BitMap structure, used if you want your own display
memory to be used as the display memory for this screen. You inform
Intuition that you want to supply your own display memory by setting
the flag CUSTOMBITMAP in the Types variables above, creating a
BitMap structure that points to your display memory and having this
variable point to it.

SCREEN STRUCTURE

If you have successfully opened a screen by calling the OpenScreenQ function, you
receive a pointer to a Screen structure. The following list shows the variables of the
Screen structure that may be of interest to you. This is not a complete list of the
Screen variables; only the more useful ones are described. Also, most of these variables
are for use by advanced programmers, so you may choose to ignore them for now.

TopEdge Examine this to see where the user has positioned your screen.

MouseX; MouseY
You can look here to see where the mouse is with respect to the upper
left corner of your screen.

ViewPprt, RastPort, BitMap, Layerlnfo
For hard-core graphics users, these are actual instances of these graphics
structures (Note: not pointers to structures). For simple use of custom
screens, these structures can be ignored.

BarLayer
This is the pointer to the Layer structure for the screen's title bar.

Screens 41



SCREEN FUNCTIONS

Here is a quick rundown of Intuition screen functions. For a complete description of
these functions, see appendix A.

Opening a Screen

This is the basic function to open an Intuition custom screen according to the
parameters specified in NewScreen. This function sets up the screen structure and sub-
structures, does all the memory allocations, and links the screen's ViewPort into
Intuition.

OpenScreen (NewScreen)
j
]
i The argument is a pointer to an instance of a NewScreen structure.

Showing a Screen Title Bar

This function causes the screen's title bar to be displayed or concealed, according to your
specification of the Siiowlt variable and the position of the various types of windows
that may be opened in the screen.

Show Title (Screen, Showit)

The screen's title bar can be behind or in front of any Backdrop windows
that are opened at the top of the screen. The title bar is always con-
cealed by other windows, no matter how this function sets the title bar.
The variable Screen is a pointer to a Screen structure. Set the variable
Showit to Boolean TRUE or FALSE according to whether the title is to
be hidden behind Backdrop windows. When Showit is TRUE; the screen
title bar is shown in front of Backdrop windows. When Showit is
FALSE, the screen title bar is always behind any window.

Moving a Screen

With this function, you can move the screen vertically.

MoveScreen (Screen, DeltaX, DeltaY)

Moves the screen in a vertical direction by the number of lines specified in

42 Screens



the DeltaY argument. (DeltaX is here for upward compatibility only
and is currently ignored). Screen is a pointer to the screen structure.

Changing Screen Depth Arrangement

These functions change the screen's depth arrangement with respect to other displayed
screens.

ScreentoBack (Screen)

| Sends the specified screen to the back of the display.

ScreentoFront (Screen)
!
i

Brings the specified screen to the front of the display.

Closing a Screen

The following function unlinks the screen and ViewPort and deallocates everything. It
ignores any windows attached to the screen. All windows should be closed first.
Attempting to close a window after the screen is closed will crash the system. If this is
the last screen displayed, Intuition attempts to reopen the Workbench.

CloseScreen (Screen)

The variable Screen is a pointer to the screen to be closed.

Handling the Workbench

These functions are for opening, closing, and modifying the Workbench screen.

OpenWorkBench()

This routine attempts to open the Workbench screen. If not enough
memory exists to open the screen, this routine fails. Also, if the Work-
bench tool is active, it will attempt to reopen its windows.

Close WorkBenchQ

This routine attempts to close the Workbench screen. If another

Screens 43



application (other than the Workbench tool) has windows opened in the
Workbench screen, this routine fails. If only the Workbench tool has
opened windows in the Workbench screen, the Workbench tool will close
its windows and allow the screen to close.

WBenchToFrontQ, WBenchToBackQ

If the Workbench screen is opened, calling these routines will cause it to
be in front or in back of other screens, depending on which command is
used. If the Workbench screen is closed, these routines have no effect.

Advanced Screen and Display Functions

These functions are for advanced users of Intuition and graphics. They are used pri-
marily in programs that make changes in their custom screens (for instance, in the
Copper instruction list). These functions cause Intuition to incorporate a changed screen
and merge it with all the other screens in a synchronized fashion. For more information
about these functions, see chapter 11, "Other Features."

MakeScreen(Screen)

This function is the Intuition equivalent of the lower-level MakeVPortQ
graphics library function. MakeScreenQ performs the MakeVPort()
call for you, synchronized with Intuition's own use of the screen's
Viewport. The variable Screen is a pointer to the screen that contains
the ViewPort that you want remade.

RethinkDispIayQ

This procedure performs the Intuition global display reconstruction,
which includes massaging some of Intuition's internal state data, rethink-
ing all of the Intuition screen ViewPorts and their relationship to one
another, and, finally, reconstructing the entire display by merging the
new screens into the Intuition View structure. This function calls the
graphics primitives MrgCopQ and LoadViewQ.

RemakeDisplayQ

This routine remakes the entire Intuition display. It performs a
MakeVPortQ (graphics primitive) on every Intuition screen and then
calls RethinkDisplayQ to recreate the view.

44 Screens



Chapter 4

WINDOWS

In the last chapter, you learned about Intuition screens, the basic unit of display. This
chapter covers the windows supported by those screens. The first half of the chapter
provides a general, description of windows—including the different ways of handling the
I/O of the virtual terminal; preserving the display when windows get overlapped; how
you open windows and define their characteristics; and how you get the pre-defined
gadgets for shaping, moving, closing, and depth-arranging windows. This section also
defines the different kinds of special windows that extend even further the capabilities of
the Intuition windowing system. You will also see how you can customize your windows
by adding individual touches like your own custom pointer.

Windows 45



In the second half of the chapter, you get all the details you need for designing your own
windows—an overview of the process of creating and opening a window, the
specification for the window structure, and brief descriptions of the functions you can
use for windows.

About Windows

The windows you open can be colorful, lively, and interesting places for the user to
work. You can use all of the standard Amiga graphics, text, and animation primitives
(functions) in every one of your windows. You can also use the quick and easy Intuition
structures and functions for rendering images, text, and lines into your windows. The
special Intuition features that go along with windows, like the gadgets and menus, can
be visually exciting as well.

Each window can open an Intuition Direct Communications Message Port (IDCMP),
which offers a direct communication channel with the underlying Intuition software, or
the window can open a console device for input and output. Either of these communica-
tion methods turns the window into a visual representation of a virtual terminal, where
your program can carry on its interaction with the user sis if it had the entire machine
and display to itself. Your program can open more than one window and treat each
separately as a virtual terminal.

Both you and the user deal with each individual window as if it were a complete termi-
nal. The user has the added benefit of being able to arrange the terminals front to back,
shrink and expand them, or overlap them.

i

Windows are rectangular display areas whose size and location can be adjusted in many
ways. The user can shape windows by making them wider or longer or both to reveal
more of the information being output by the program. He can also shrink windows into
long, narrow strips or small boxes to reveal other windows or to make room for other
windows to open. Multiple windows can be overlapped, and the user can bring a win-
dow up front or send it to the bottom of the stack with a click of the mouse button.
While the user is doing all this shaping and rearranging and stacking of windows, your
program need not pay any attention. To the program, there is nothing out there but a
user with a keyboard and a mouse (or, in place of a mouse, there could be a joystick, a
graphics tablet, or practically any other input device).

46 Windows



- -r f Aniga Workbench — INTUITION-Version -39. 3

I

Figure 4-1: A High-resolution Screen and Windows

Your program can open as many of these virtual terminal windows as the memory
configuration of your Amiga will allow. Each window opens in a specific screen, and
several windows may open in the same screen. Even windows opened by different pro-
grams may coexist in the same screen.

Your program can open windows for any purpose. For example, different windows of an
application can represent: .

o Different interpretations of an object, such as the same data represented as a
bar chart and a pie chart.

o Related parts of a whole, such as the listing and output of a program.

o Different parts of a document or separate documents being edited
simultaneously.

You open a window by specifying its structure and issuing a call to a function that
opens windows. After that, you can output to the user and receive input while Intuition
manages all the user's requests to move, shape, and depth-arrange the window.
Intuition lets you know if the user makes a menu choice, chooses one of your own cus-
tom gadgets, or wants to close the window. If you need to know when the user changes
the window's size or moves the pointer, Intuition will tell you about that, too.

Windows 47



Custom gadgets, menus, input/output, and controllers are dealt with in later chapters.
The balance of this section deals with some important concepts you'll need to know
before attempting to open your own windows.

WINDOW INPUT/OUTPUT

You can choose from two different paths for input and two for output. Each path
satisfies particular needs. The two paths for user input are as follows:

o [intuition Direct Communications Message Ports (IDCMPs). The message ports
|give you mouse (or other controller) events, keyboard events, and Intuition mes-
sages in their most raw form; in addition, these ports supply the way for your
|program to send messages to Intuition.

o Console device. The console ports give you processed input data, including key-
codes translated to ASCII characters and Intuition event messages converted to
ANSI escape sequences. If you wish, you can also get raw (untranslated) input
through the console device.

iI
There are also two paths for program output:

o Text is output through the console device, which formats and supplies special
tiext primitives and text functions, such as automatic line wrapping and
scrolling.

j

o CJiraphics are output through the general-purpose Amiga graphics primitives,
which provide rendering functions such as area fill and line-drawing and anima-
tion functions.
|

If you use the console device for input, output, or both, you need to open it after open-
ing your window. If you want the IDCMP for input, you specify one or more of the
IDCMP flags in the NewWindow structure. This automatically sets up a pair of mes-
sage ports, one for Intuition and one for you. Although the IDCMP does not offer text
formatting or character positioning, it has many special features that you may want,
and it requires less RAM and less processing overhead.

For more information about I/O methods read chapter 8, "Input and Output Methods."

48 Windows



OPENING, ACTIVATING AND CLOSING WINDOWS

r

r

t

Before your jprogram can open a window, you need to initialize a NewWindow struc-
ture. This structure contains all the arguments needed to define and open a window,
including initial position and size, sizing limits, color choices for window detailing, gadg-
ets to attach, how to preserve the display, IDCMP flags, window type if it is one of the
special windows, and the screen in which the window should open.

A window is opened and displayed by a call to the OpenWindow() function, whose
only argument is a pointer to the NewWindow structure. After successfully opening a
window, you receive a pointer to another structure, the Window structure. If you are
opening the window in a custom screen, you need to call OpenScreen() before opening
the window.

Only one window is active in the system at a time. The active window is the one that is
receiving user input through a keyboard and mouse (or some other controller). Some
areas of the [active window are displayed more boldly than those on inactive windows.
In particular, the title bars of inactive windows are covered with a faint pattern of dots,
rendering them slightly less distinct. This is called ghosting. See figure 4-1 for an exam-
ple of the appearance of inactive windows. When the user brings up a menu list in the
screen title bar, the active window's menu list is displayed. Also, the active window has
an input cursor when an input request is pending, and the active window receives system
messages.

Your program need not worry about whether or not one of its windows is active. The
inactive windows can just wait for the user to get back to them, or they can be doing
some background task that requires no user input. The job of activating windows is
mostly left up to the user, who activates a window by moving the pointer into the win-
dow and clicking the left mouse button. There is, however, an ACTIVATE flag in the
NewWindow structure. Setting this flag causes the window to become active when it
opens. If the user is doing something else when a window opens with the ACTIVATE
flag set, input is immediately redirected to the newly opened window. You will probably
want to set this flag in the first window opened when your program starts up. Although
windows opened after the first one may have the ACTIVATE flag set, they do not need
to. It is up to you to design the flow of information and control.

| -
After your window is opened, you can discover when it is activated and when it is inac-
tivated by setting the IDCMP flags ACTIVE WINDOW and INACTIVE WINDOW. If
you set these flags, the program will receive a message every time the user activates your
window or causes your window to become inactive by activating some other window.

Although there is a window closing gadget, a window does not automatically close when
the user selects this gadget. Intuition sends the program a message about the user's
action. The program can then do whatever clean-up is necessary, such as replying to

Windows 49



any outstanding Intuition messages or verifying that the user really meant to close the
window, and then call CloseWindowQ.

If the user closes the last window in a standard screen other than the Workbench screen,
the screen closes also.

|
When the active window is closed, the previously active window may become the active
window. The window (call it window A) that was active when this one was opened will
become the active window. If window A is already closed, then the window (if any) that
was active when window A opened will become the active window, and so on.

SPECIAL WINDOW TYPES

Intuition's special windows give you some very useful bonus features, in addition to all
the normal window features. The Backdrop window stays anchored to the back of the
display and provides a way to take over the display without taking over the machine.
The Borderless window supplies a window with no drawn border lines. The window
with the fanciful (some even say whimsical) name, Gimmezerozero, gives you all the
border features plus the freedom to ignore borders altogether when you are drawing into
the window. Finally, the SuperBitMap window not only gives you your own display
memory in which to draw, but also frees you from ever worrying about preserving the
window when the user sizes it or overlaps it with another window.

Notice that these are not necessarily separate, discrete window types. You can combine
them for even more special effects. For instance, you can create a Backdrop, Borderless
window that £lls the entire screen and looks like a normal computer display terminal.

Borderless Window Type

This window |is distinguished from other windows by having no default borders. With
normal windows, Intuition creates a thin border around the perimeter of the window,
allowing the window to be easily distinguished from other windows and the background.
When you ask for a Borderless window, you do not get this default thin border; how-
ever, your window can still have borders. It can have borders based solely on the loca-
tion of border gadgets and whether or not you have supplied title text, or it may have
no gadgets or text and thus no visible borders and no border padding at all. You can
use this window to cover the entire video display. It is especially effective combined with
a Backdrop window. This combination forms a window that you can render in almost
as freely as writing directly to the display memory of a custom screen. It has the added
benefit that you can render in it without running the risk of trashing menus or other
windows in the display.

50 Windows



If you use a Borderless window that does not cover the entire display, be aware that its
lack of borders may cause visual confusion on the screen. Since windows and screens
share the same color palette, borders are often the only way of distinguishing a window
from the background.

Set the BORDERLESS flag in the NewWindow structure to get this window type.

Gimmezerozero Window Type

The unique feature of a Gimmezerozero window is that there are actually two "planes"
to the window: a larger, outer plane in which the window title, gadgets, and border are
placed; and a smaller, inner plane (also called the inner window) in which you can draw
freely without worrying about the window border and its contents. The top left coordi-
nates of the inner window are always (0,0), regardless of the size or contents of the outer
window; thus the name "Gimmezerozero."

The area in which you can draw is formally defined as the area within the variables
BorderLeft, BorderTop, BorderRight, and BorderBottom. These variables are
computed by Intuition when the window is opened. To draw in normal windows with
the graphics primitives (for instance to draw a line from the top left to somewhere else
in the window), you have to start the line away from the window title bar and borders.
Otherwise, you risk drawing the line over the title bar and any gadgets that may be in
the borders. In a Gimmezerozero window, you can just draw a line from (0,0) to some
other point in ,̂he window without worrying about the window borders.

The Gimmezerozero window uses more RAM than other window types and degrades per-
formance in the moving and sizing of windows. There can be a noticeable performance
lag, especially when several Gimmezerozero windows are open at the same time.

There are some special variables in the Window structure that pertain only to
Gimmezerozero windows. The GZZMouseX and GZZMouseY variables can be exam-
ined to discover the position of the mouse relative to the inner window. The
GZZWidth and GZZHeight variables can be used to discover the width and height of
the inner window.

i

The console device gives you another kind of encumbrance-free window. If you are using
the console device, any formatted text you output goes into an inner window automati-
cally; you need not worry about gadgets. Therefore, you do not need a Gimmezerozero
window just for the purpose of text output. See chapter 8, "Input and Output," for
more information about this aspect of the console device.

Windows 51



Requesters in a Gimmezerozero window appear relative to the inner window. If you are
bringing up requesters in the window, you may wish to take this into consideration when
deciding where to put them. See chapter 7, "Requesters and Alerts," for more informa-
tion about requester location.

To specify a Gimmezerozero window, set the GIMMEZEROZERO flag in the window
structure's flags. All system gadgets you attach to this type of window will go into the
outer window automatically; however, if you are attaching custom gadgets and you want
the gadgets to appear in the border (not in the inner window), be sure to set the
GZZGADGET flag in your gadget structures. If you do not, Intuition will draw custom
gadgets in the display of the inner window.

Backdrop Window Type
!
i

The Backdrop window, as its name implies, always opens in the back of the Intuition
screen. Its great advantage is that other windows can overlap it and be depth-arranged
without ever going behind the Backdrop window. Because of this characteristic, you can
use the Backdrop window as a primary display surface while opening other auxiliary
windows on top of it.

The Backdrop window is like normal windows except that:

o It always opens behind all other windows (including other Backdrop windows
that you might already have opened).

o The only system gadget you can attach is the close-window gadget. (You can
attach your own gadgets as usual.)

Normal windows in the same screen open in front of all Backdrop windows and
always stay in front of them. No amount of depth arranging will ever send a
non^Backdrop window behind a Backdrop window.

You might want to use a Backdrop window, for example, in a simulation program in
which the environment is rendered in the Backdrop window while the simulation
controls exist in normal windows that float above the environment. Another example is
a sophisticated graphics program where the primary work surface is on the Backdrop
window while auxiliary tools are made available in normal windows in front of the work
surface. j

You can often use a Backdrop window instead of drawing directly into the display
memory of a custom screen. If you want to draw in your background with the graphics
primitives, you may even prefer a Backdrop window to a custom screen because you do
not run the danger of writing to the window at the wrong time and trashing a menu

52 Windows



-1

that is being displayed. In fact, if you also set the BORDERLESS flag and you create a
window that is the full-screen width and height, you get a window that fills the entire
screen and stays in the background. If you also specify no gadgets, there will be no
borders. Finally, if you add a call to ShowTitle() with an argument of FALSE, the
window will conceal the screen title. All of these steps result in a window that fills the
entire video display, has no borders, and stays in the background.

To use the Backdrop feature, you set the BACKDROP flag in the window structure.

SuperBitMap Window

SuperBitMap is both a window type and a way of preserving and redrawing the display.
This window is like other windows except that you get your own bit-map instead of
using the one belonging to the screen. The windowing system displays some portion of
the window's tyt-map in the screen's raster according to the dimensions and limits you
specify and the! user's actions. You can make the bit-map any size as long as the win-
dow sizing limits are set accordingly.

This window is handy when you want to give the user the flexibility of scrolling around
and revealing any portion of the bit-map. You can do this because the entire bit-map is
always availably to be displayed.

To get this type of window, set the SUPERJBITMAP flag in the window structure and
set up a BitMap structure. You probably want to set the GIMMEZEROZERO flag
also, so that the borders and gadgets will be rendered in a separate bit-map. You need
to be certain tfcat the size-limiting variables in the window structure are properly set,
considering the size of the bit-map and how much of it you want to display.

For complete information about SuperBitMap, see "Setting Up a SuperBitMap Window"
later in this chapter.

WINDOW GADGETS

14 The easiest way for a user to communicate with a program running under Intuition is
through the use of window gadgets. There are two basic kinds of window gadgets—
system gadgets that are predefined and managed by Intuition and your own custom
application gadgets.

Windows 53



System Gadgets

System gadgets are supplied to allow the user to manage the following aspects of window
display: size and shape of windows, location of windows on the screen, and depth
arrangement. Also, there is a system gadget for the user to tell the application when he
or she is ready to close the window. These gadgets save you a lot of work because, with
the exception of the close gadget, your program never has to pay any attention to what
the user does with them. On the other hand, if you want to be notified when the user
sizes the window because of some special drawing you may be doing in the window,
Intuition will let you know. For more information, read about the IDCMP verify func-
tions in chjapter 8, "Input and Output Methods."

In the winidow structure, you define the starting location and starting size of a window
and a maximum and minimum height and width for sizing the window. When the win-
dow opensj, it appears in the location and in the size you have specified. After that,
however, the user normally has the option of shaping the window within the limits you
have set, moving it about on the screen and sending it into the background behind all
the other displayed windows or bringing it into the foreground. To give the user this
freedom, p|us the ability to request that the window be closed, you can attach system
gadgets to ^he window. The graphic representations of these gadgets are predefined, and
Intuition always displays them in the same standard locations in the window borders. In
the window! structure, you can set flags to request that all, some, or none of these system
gadgets be attached to your window. The system gadgets and their locations in the win-
dow are:

o A sizing gadget in the lower right of the window. With the sizing gadget, the
usei* can stretch or shrink the height and width of the window. You set the
maximum and minimum limits for sizing. You can specify whether this gadget
is located in the right border or bottom border, or in both borders.

o Two depth-arrangement gadgets in the upper right of the window. One sends
the window behind all other displayed windows (back gadget) and the other
brinks the window to the front of the display (front gadget).

o A drag gadget, which occupies every part of the window title bar not taken up
by ojther gadgets. The drag gadget allows the user to move the window to a
newjlocation on the screen. A title in the title bar does not interfere with drag

jet operation.

A close gadget in the upper left of the window, which allows the user to request
that the window be closed.

54 Windows



Figure 4-2 shows how all the system window gadgets look and where they are located in
the window borders.

Figure 4-2: System Gadgets for Windows

Application Gadgets

Four types of (application gadgets are available—proportional, Boolean, string, and
integer. You can use application gadgets to request various kinds of input from the
user, and that imput can affect the application in any way you like. You design gadgets
as text and graphic images to go anywhere in the window. For application gadgets, you
define a data structure for each one and create a linked list of these structures. To
attach your list of gadgets to a window, set a pointer in the NewWindow structure to
point to the first gadget in the list. For details about creating gadgets, see chapter 5
"Gadgets."

Windows 55



WINDOW BORDERS

Intuition offers you several possibilities for handling window borders. You can take
advantage of the fancy border features, such as automatic double border lines around
the window and automatic padding of borders to allow for gadgets. If you'd rather, you
can eliminate borders completely, or you can use the Gimmezerozero window, which
gives you all the border features and then lets you ignore them.

The actual border lines are drawn around the perimeter of the window and are mostly
distinct from the border area in which border gadgets are placed. Intuition automati-
cally draws a double border around a window unless you ask for something different.
This nominal border consists of an outer line around the entire window, rendered in the
BlockPen color, and within this a second line, rendered in the DetailPen color. The
two "pen" colors are defined in the New Window structure.

The default minimum thickness of the border areas depends upon certain parameters set
in the definition of the underlying screen, certain choices the user has made with Prefer-
ences, and the default font. If the window is not a special Borderless window, the bord-
ers will be at least the default thickness. Intuition adjusts the size of a window's border
areas to accommodate system gadgets or your own application gadgets.

You can find the thickness of the border areas in the variables BorderLeft,
BorderTop, BorderRight, and BorderBottom. These variables are computed when
the window is opened and can be found in the Window structure. You may want to
use them if you are drawing lines in the window with graphics primitives, w,hich require
you to specify a set of coordinates as the beginning and ending points for the line. In a
typical window, you cannot specify a line from (0,0) to (50,50) because you may draw a
line over the window title bar. Instead, you would use the border variables to specify a
line from (0+BorderLeft, 0+BorderTop) to (50+BorderLeft), 50+BorderTop).
This may look clumsy, but it offers a way of avoiding a Gimmezerozero window,
which — although much more convenient to use—requires extra memory and impacts
performance.

For the top border, in addition to the system gadgets and your own gadgets, you can
specify a window title. The window title bar does not appear unless you specify one of
the following:

o A window title.

o Any of the system gadgets for window dragging, window depth arranging, or
window closing.

56 Windows



i '%•

r

Usually, borders are drawn automatically and adjusted within the dimensions you specify
in the NewWindow structure. In the special Borderless and Gimmezerozero windows,
however, borders are handled differently. A Borderless window has no drawn borders
and no automatic border spacing or padding. If you have system gadgets or your own
gadgets with a border flag set, borders may be visually defined by the gadgets. A
Gimmezerozero window places the borders and gadgets in their own bit-map, separate
from the window's bit-map. This means you can draw freely across the entire surface of
the window without worry about scribbling over the gadgets.

You can specify whether or not your application gadgets reside in the borders, and in
which border, by setting a flag in the Gadget structure. See chapter 5, "Gadgets," for
more information about gadgets and how to place them where you want them.

t

PRESERVING THE WINDOW DISPLAY

When a window is revealed after having been overlapped, the display has to be redrawn.
Intuition offers three ways of preserving the display:

o In the (Simple Refresh method, your program redraws the display.P
o In the Smart Refresh method, Intuition keeps a copy of the display in RAM

buffers.

o In the SuperBitMap method, you allocate an. entirely separate display memory
for your window.

Smart Refresh and SuperBitMap use the window's idea of its display memory space to
save the parts of the window that are not; currently being displayed. Windows and
other high-level display components, such as rtenus and gadgets, have a "virtual" under-
standing of their display memory. The application can Ignore other windows being
displayed and write into its own virtual memory area. The Amiga graphics software
then takes these requests to draw in virtual display memory and translates them into
real operations that are placed in save buffers (for Smart Refresh) or in areas of a private
bit-map (for SuperBitMap) maintained by the application.

The three methods of preservation are explained below. Yon must choose one of them.
Figures 4-3, 4-4, and 4-5 compare the three methods.

Windows 57



fi!
Simple Refresh

With the Simple Refresh redrawing method, Intuition does not need to remember any-
thing about windows that are overlapped. For the most part, the program is responsible
for redrawing the window. If the user sizes the window larger on either axis or reveals a
window that was overlapped, the program must redraw the display. However, if the
user merely drags the window around, Intuition preserves it and redisplays it in the new
location. Simple Refresh tends to be slower than other methods, but it is memory-
efficient, since no RAM is consumed in saving the obscured portions of a window. Sim-
ple Refresh uses the screen's display memory for the window's display.

SIMPLE REFRESH

The obscured portion
is discarded.

Figure 4-3: Simple Refresh

58 Windows



Smart Refresh

i i .

With the Smart Refresh redrawing method, Intuition keeps all information about the
window in RAM, whether the window is currently concealed or is up front. If the user
reveals a window that was overlapped, Intuition recreates the display. If the sizing
gadget is attached, the application can still recreate a portion of the display when the
user makes the window larger. Smart Refresh uses the screen's display memory for the
window display and requires extra buffers for the off-screen portions of the window (por-
tions not currently being displayed). Smart Refresh uses more display memory but
redraws the display faster than Simple Refresh.

* I

SMART REFRESH

The obscured portion is
preserved offscreen.

Figure 4-4: Smart Refresh

Windows 59



SuperBitMap

This is both a special type of window and a method of redrawing the display. When
you choose this method of redrawing, you get your own bit-map to use as display
memory instead of using the screen's display memory. You make this bit-map as large
as the window can get (or larger). You never have to worry about redisplay after the
window is uncovered because the entire display is always there in RAM. For more infor-
mation about SuperBitMap, see the "Special Windows" section in this chapter.

SUPERBITMAP
Portions of your offscreen
bitmap are shown onscreen.

Figure 4-5: SuperBitMap Refresh

REFRESHING THE WINDOW DISPLAY
l

If you open either a Simple Refresh or a Smart Refresh window, your program may be
asked to refresh part of your display at some time. When a Simple Refresh window is
moved or sized, or when other windows are moved or sized in such a way that areas of a
Simple Refresh window are revealed, the window will have to be refreshed. With Smart
Refresh windows, the window must be sized larger on either axis to generate a
REFRESHWINDOW event.

60 Windows



I
ft

The program finds out that the window needs refreshing via either source of input, the
IDCMP or the console device. A message of the class REFRESHWINDOW arrives at
the IDCMP, telling the program that the window needs to be refreshed. Every time the
program learns that it should refresh a window, it must take some action, even if it is
just the acceptable minimum action described below.

When the program is asked to refresh a window, before actually starting to refresh it the
program should call the Intuition function Beg in Refresh (). This function makes sure
that refreshing is done in the most efficient way, only redrawing those portions of the
window that really need to be redrawn. The rest of the rendering commands are dis-
carded.

After BeginRefreshQ is called, the program should redraw its display. Then, call
EndRefresh() to restore the state of the internal structures.

Even if you don't want the program to redraw immediately, you should make sure the
program at least calls Begin/EndRefresh() each time it is asked to refresh a window.
This helps Intuition and the layer library keep things sorted and organized.

If you are opening a window that you will never care to refresh, no matter what happens
to or around it, then you can avoid calling BeginRefreshQ and EndRefreshQ by set-
ting the NOCAREREFRESH flag in the NewWindow structure when you open your
window. i

WINDOW POINTER

The active window contains a pointer to allow the user to make selections from menus,
choose gadgets, and so on. The user moves the pointer around with a mouse controller,
other kinds of controllers, or the keyboard cursor keys.

Pointer Position

If your program needs to know about pointer movements, you can either look at the
position variables or arrange to receive broadcasts each time the pointer moves. The
position variables MouseX and MouseY always contain the current pointer x and y
coordinates, whether or not your window is the active one. If you elect to receive broad-
casts, you get a set of x,y coordinates each time the pointer moves. These coordinates
are relative to the upper left corner of your window and are reported in the resolution of
your screen, even though the pointer's visible resolution is always in low-resolution mode
(note that the pointer is actually a sprite).

Windows 61



If your window is a Gimmezerozero window, you can examine the variables
GZZMouseX and GZZMouseY to find the position of the mouse relative to the upper
left corner of the inner window.

To get broadcasts about pointer movements, either InputEvents or message-port mes-
sages, you must set the REPORTMOUSE flag in your window structure. Thereafter,
whenever your window is active, you'll get a broadcast every single time the pointer
moves. This can be a lot of messages, so be prepared to handle them efficiently. If you
want to change whether or not you are following mouse movements, you can call
ReportMouseQ.

You can also get broadcasts about pointer movements by setting the flag
FOLLOWMOUSE in your application gadget structures. If this flag is set in a gadget,
the current pointer position is reported as long as that gadget is selected by the user.
This can result in a lot of messages, too.

Custom Pointer

You can set up your window with a custom pointer to replace the default arrow pointer.
To define the pointer, set up a sprite data structure (sprites are one of the general-
purpose Amiga graphics structures). To place your custom pointer in the window, call
SetPointer(). To remove your custom pointer from the window, call ClearPointer().
Both of these functions take effect immediately if yours is the active window.

Also, you can change the colors of the Intuition pointer. The Intuition pointer is always
sprite 0. To change the colors of sprite 0, call the graphics library routine SetRGB4().
Refer to chapter 12, "Style," for more information about this.

See the last section of this chapter for a complete example of a custom pointer.

GRAPHICS AND TEXT IN WINDOWS

There are two ways of rendering graphics, lines, and text into windows. You can use all
of the Amiga graphics, animation, and text primitives in any window. Also, you can use
the quick and easy Intuition structures and functions to display Intuition Image,
Border, or IntuiText structures in windows. Note that the Border structure is a
general-purpose line-drawing mechanism. See chapter 9, "Images, Line Drawing, and
Text," for more information about these topics.

62 Windows



'T WINDOW COLORS

The number of colors you can use for the window display and the actual colors that will
appear in the color registers are defined by the screen in which the window opens. In
the window structure, you specify two color register numbers ("pens"), one for the
border outline, text and gadgets and one for block fills (such as the title bar). These pen
colors are also a function of the screen. You can specify different colors for the pens
than those used by the screen or you can use the screen's pen colors.

WINDOW DIMENSIONS

In the New Window structure, you define the dimensions and the starting location of
your window on the screen. If you are letting the user change the size and shape of the
window, you also need to specify the minimum size to which the window can shrink and
the maximum size to which it can grow. If you do not ask that the window sizing
gadget be attached to the window, then you need not initialize any of these maximum
and minimum variables.

In setting all these size dimensions, bear in mind the horizontal and vertical resolutions
of the screen in which you are opening the window.

If you want to change the sizing limits after you have opened the window, you can call
WindowLimitsQ with the new values.

Windows 63



I ! T

Using Windows

To create a window, follow these steps:

1. Initialize a New Window structure.

2. When you are ready to display the window, call OpenWindow() with a pointer
to the New Window structure.

3. After you call OpenWindowQ, the NewWindow structure is no longer
needed.

When creating a NewWindow structure, you need to decide on:

o The screen in which the window will appear.

o The window's characteristics:

o Which system gadgets you want.

o Preservation method for the window display.

o Special window features—Gimmezerozero, Borderless, Backdrop, or
SuperBitMap.

o Type of input from the Intuition Direct Communications Message Ports (if
any).

o Pointer movement broadcasts.

o Other characteristics, such as starting position and size and color of the
pens used to draw borders and fill blocks.

o Custom images, such as a custom "check mark" for the menus or a custom
pointer.

64 Windows



t
f NEWWINDOW STRUCTURE

Here are the specifications for the New Window structure:

struct NewWindow
{

SHORT LeftEdge, TopEdge;
SHORT Width, Height;
UBYTE DetailPen, BlockPen;
ULONG IDCMPFlags;
ULONG Flags;
struct Gadget *FirstGadget;
struct Image *CheckMark; _
UBYTE *Title;
struct Screen *Screen;

_ struct BitMap *BitMap;
SHORT MinWidth, MinHeight;
SHORT MaxWidth, MaxHeight;
USHORT Type;

The fields in the NewWindow structure are explained below. Some of the fields con-
tain variables to which you need to assign a value, some contain flag bits to set or unset,
and some are pointers to other structures.

LeftEdge, TopEdge, Width and Height

These fields describe where your window will first appear on the screen and how
large it will be initially. These dimensions are relative to the top left corner of the
screen, which has the coordinates (0,0):

LeftEdge The initial x position, which represents the offset from the first pixel on
the line, pixel 0.

TopEdge The initial y position, which represents how many lines down from the
top (line 0) you want the window to begin.

Width The initial width in pixels.

Height The initial height in lines.

DetailPen and BlockPen

These fields contain the "pen" numbers used to render details of the window. The

Windows 65



colors associated with the pens are a function of the screen. If you supply a value of
-1 for either of these, you will get the screen's value for that pen by default.

DetailPen
The pen number (or -1) for the rendering of window details like gadgets
or text in the title bar

BlockPen
The pen number (or -1) for window block fills (like the title bar) and the
outer rim of the window border.

Flags

You can set any of the following flags.

To get system gadgets, you set the applicable flags. They are:

WINDOWSIZING
This flag allows the user to change the size of the window. Intuition places the
window's sizing gadget in the lower right of your window. By default, the right
border is adjusted to accommodate the sizing gadget, but you can change this
with the following two flags, which work in conjunction with WINDOWSIZING.
The sizing gadget can go in either the right or bottom border (or both) of the
window.

o The SIZEBRIGHT flag, which is the default, puts the sizing gadget in the
right border.

o The SIZEBBOTTOM flag puts the sizing gadget in the bottom border. You
might wish to set this flag to put the sizing gadget in the bottom border if
you want all possible horizontal bits—for instance, for 80-column text—
and are willing to sacrifice vertical space.

WINDOWDEPTH
This flag allows the user to change the window's depth arrangement with
respect to all other currently displayed windows. Intuition places the window
depth-arrangement gadgets in the upper right of the window.

Setting this flag selects both the UPFRONT gadget to bring the window into
the foreground and the DOWNBACK gadget to send it behind other currently
displayed windows.

WINDOWCLOSE
When the user selects this gadget, Intuition transmits a message to your applica-
tion. It is up to the application to call CloseWindow() when ready. Setting
this flag attaches the standard close gadget to the upper left of the window.

66 Windows



WINDOWDRAG
This flag turns the entire title bar of the window into a drag gadget, allowing
the user to move the window into a different position on the screen by placing
the pointer anywhere in the window title bar and moving the mouse or other
controller.

NOTE: Even if you do not specify a text string in the Text variable shown
below, a title bar appears if you use any one of the system gadgets
WINDOWDRAG, WINDOWDEPTH, or WINDOWCLOSE. If no text is pro-
vided, the title bar is blank.

GIMMEZEROZERO
Set this flag if you want a Gimmezerozero window.

The following three flags determine how Intuition preserves the display when an
overlapped window is uncovered by the user. You must select one of the following:

SIMPLEJIEFRESH
When this flag is set, every time a portion of the window is revealed the applica-
tion program must redraw its display.

SMARTJIEFRESH
When this flag is set, the only time you have to redraw your display is when the
window's sizing gadget is used to make the window larger.

NOTE: If you open a SMARTJIEFRESH window without asking for the sizing
gadget, then Intuition never tells you to redraw this window.

SUPER_BITMAP
Setting this flag means you are allocating and maintaining your own bit-map
and display register. You must also set the BitMap field to point to your own
BitMap structure.

BACKDROP
Set this flag if you want a Backdrop window.

REPORTMOUSE
This flag sets the window to receive pointer movements as x,y coordinates. Also
see the description of the IDCMP flag, MOUSEMOVE, in chapter 8S "Input and
Output Methods."

Windows 67



BORDERLESS
This flag creates a window with none of the default border padding and border
lines.

NOTE: Be careful when you set this flag. It may cause visual confusion on the
screen. Also, there may still be some borders if you have selected some of the
system gadgets, supplied text for the window's title bar, or specified that any of
your custom gadgets go in the borders.

ACTIVATE
When this flag is set, the window automatically becomes active when it is
opened.

NOTE: Use this flag carefully. It can change where the user's input is going,

NOCAREREFRESH
Set this flag if you do not want to receive messages telling you to refresh your,
window. •— ~"

RMBTRAP
Set this flag if you do not want any menu operations at all for your window.
Whenever the user presses the right mouse button while this window is active,
the program will receive normal MOUSEBUTTON events.

IDCMPFIags

The IDCMPFIags are listed and described in appendix A for the OpenWindow()
function and in chapter 8, "Input and Output Methods." If any of these flags are
set, Intuition creates a pair of message ports and uses them selectively for sending
input to the task opening this window instead of using the console device.

Gadgets

This is a pointer to the first in the linked list of custom Gadget structures that you
want included in the window.

CheckMark

This is a pointer to an instance of a custom image to be used when menu items
selected by the user are to be checkmarked. If you just want to use the default
checkmark (vO> se t i tn*s field to NULL.

Text

This is a pointer to a null-term mated text string, which becomes the window title
and is displayed in th« window title bar. Intuition draws the text using the colors in
the DetailPen and BlockPen fields and displays as much as possible of the window

68 Windows



i "V
t I

. title, depending upon the current width of the title bar. You get the screen's default
font,

NOTE: The window title is not an instance of IntuiText; it is simply a string end-
ing in a NULL.

Type

This contains the screen type for this window. The currently available types are
WBENCHSCREEN and CUSTOMSCREEN.

NOTE: If you choose CUSTOMSCREEN, you must have already opened your cus-
tom screen via a call to OpenScreen(), and you must copy that pointer into the
Screen field immediately below.

Screen

If your type is one of the standard screens, then this argument is ignored. If Type
is CUSTOMSCREEN, this is a pointer to your custom screen structure.

BitMap

If you specify SUPER_BITMAP as the refresh type, this flag must be a pointer to
your own BitMap structure. If you specify some other refresh type, Intuition
ignores this field.

The following four variables are used to set the minimum and maximum size to which
you allow the user to size the window. If you do not set the flag WINDOWSIZING,
then these variables are ignored by Intuition.

If you set any of these variables to 0, that means you want to use the initial setting for
that dimension. For example, if MinWidth is 0, Intuition gives this variable the same
value as the opening Width of the window.

NOTE: To change the limits after the window is opened, call WindowLimitsQ.

MinWidth

The minimum width for window sizing, in pixels.

MinHeight
The minimum height for window sizing, in lines.

MaxWidth

The maximum width for window sizing, in pixels.

Windows 69



MaxHeight

The maximum height for window sizing, in lines.

WINDOW STRUCTURE

If you have successfully opened a window by calling the OpenWindow() function, you
receive a pointer to a Window structure. This section describes some of the more useful
variables of the Window structure. A complete description of the Window structure is
given in appendix B.

LeftEdge, TopEdge, Width and Height

As the user moves and sizes your window, these variables will change to reflect the
new parameters.

MouseX, MouseY, GZZMouseX, GZZMouseY

These variables always reflect the current position of the Intuition pointer, whether
or not your window is currently the active one. The GZZMouse variables reflect the
position of the pointer relative to the inner window of Gimmezerozero windows and
the offset into normal windows after taking the borders into account.

ReqCount

You can examine this variable to discover how many requesters are currently
displayed in the window.

WScreen

This variable points to the data structure for this window's screen. If you have
opened this window in a custom screen of your own making, you should already
know the address of the screen. However, if you have opened this window in one of
the standard screens, this variable will point you to that screen's data structure.

RPort

This variable is a pointer to this window's RastPort. You may need the address of
the RastPort when using the graphics, text, and animation functions.

BorderLeft, BorderTop, BorderRight, Border Bottom

These variables describe the current size of the respective borders that surround the
window.

70 Windows



BorderRPort

With Gimmezerozero windows, this variable points to the Ras tPor t for the outer
window, in which the border gadgets are kept.

UserData

This is a memory location that is reserved for your use. You can attach your own
block of data to the window structure by setting this variable to point to your data.

WINDOW FUNCTIONS

Here's a quick rundown of Intuition functions that affect windows. For a complete
description of these functions, see appendix A.

Opening the Window ~

Use the following function to open a window:

OpenWindow (New Window)

NewWindow is a pointer to a NewWindow structure. This pointer is
required by many of the other functions listed below.

Menus

Use the following functions to attach and remove menus:

SetMenuStrip(Window? Menu)

This function attaches menus to a window, manages the display of win-
dows, and reports to the application when the user makes a menu choice.

CIearMcnuStrip(Window)

This function removes the menu strip from a window. After this is done,
the user can no longer access menus for this window. If you have called
SetMenuStrip(), you should call ClearMenu Strip () before closing your
window.

Windows 71



See chapter 6, "Menus," for complete information about setting up your menus.

Changing Pointer Position Reports

Although you decide when opening the window whether or not you want broadcasts
about pointer position, you can change this later with the following function:

ReportMouse(Wlndow, Boolean)

This function determines whether or not mouse movements in this win-
dow are reported.

Closing the Window

After the user selects the close gadget, the program can do whatever it needs to do to
clean up and then actually close the window with the CloseWindow (Window) func-
tion. This function closes a window. If its screen is a standard screen (but not the
WorkBench) that would be empty without the window, this function closes the screen as
well.

Requesters in the Window

The following two functions allow requesters to become active:

Request (Requester, Window)

This function activates a requester in the window.

SetDMRequest (Window, Requester)

This function sets up a requester that the user can bring up in the win-
dow by clicking the menu button twice.

These two functions disable requesters:

EndRequest (Requester, Window)

7 This function removes a requester from the window.

72 Windows



ClearDMRequest (Window, Requester)

This function clears the double-click requester, so that the user can no
longer access it.

Custom Pointers

The following functions apply if you have a custom pointer:

SetPointer (Window, Pointer, Height, Width, Xoffset, Yoffset)

This function sets up the window with a sprite definition for a custom
pointer. If the window is active, the change takes place immediately.

ClearPointer (Window) _ _

This function clears the sprite definition from the window and resets to
the default Intuition pointer.

Changing the Size Limits

The following function changes the limits for window sizing:

WindowLimits (Window, MinWidth, MinHeight, MaxWidth, MaxHeight)

This function changes the maximum and minimum sizing of the window
from the initial dimensions in the NewWindow structure. If you do not
want to change a dimension, set the corresponding argument to 0. Out-
of-range numbers are ignored. If the user is currently sizing the window,
new limits take effect after the user releases the select button.

A #4

Changing the Window or Screen Title

The following function changes the window title after the window has already been
displayed:

SetWindawTitles (Window, WindowTitle* ScreenTitle)

This function changes the window title (sad screen title, if this is the

Windows 73



active window) immediately. "WindowTitle or ScreenTitle can be -1, 0,
or a null-terminated string:

-1

0

Do not change this title.

Leave a blank title bar

string Change to the title given in this string.

Refresh Procedures

The following functions allow you to refresh your window in an optimized way:

BeginRefresh (Window)

This function initializes Intuition and layer library internal states for
optimized refresh. After you call this procedure, you may redraw your
entire window. Only those portions that need to be refreshed will actu-
ally be redrawn; the other drawing commands will be discarded.

EndRefresh (Window)

After you've refreshed your window, call EndRefreshQ to restore the
internal states of Intuition and the layer library.

Programmatic Control of Window Arrangement

These functions allow you to modify the arrangement of your window as if the user were
activating the associated system window gadgets:

MoveWindow (Window, DeltaX, DeltaY)

This function allows you to move the window to a new position in the
screen.

SiaeWlndow (Window, DeltaX, DeltaY)

You can change the size of your window with a call to this procedure.

74 Windows



WindowToFront (Window)

This function causes your window to move in front of all other windows
in this screen.

WindowToBack (Window)

This function causes your window to move behind all other windows in
this screen.

*#*

SETTING UP A SUPERBITMAP WINDOW

For a SuperBitMap window, you need to set up your own bit-map, since you will not be
using the screen's display memory. To set up the bit-map, you need to create a
BitMap structure and allocate memory space for it.

The general-purpose graphics function InitBitMap() prepares a BitMap structure,
which describes how a linear memory area is organized as a series of one or more rec-
tangular bit-planes. Here is the specification for this function:

InitBitMap (bitmap, depth, bitwidth, bit height)

The arguments you supply are:

bitmap
This is a pointer to the BitMap structure to be initialized.

depth
This specifies the number of bit-planes to set up.

bitwidth
This specifies how wide each bit-plane should be, in bits. Should be a multiple
of 16.

bitheight
This specifies how high each bit-plane should be, in lines.

The general-purpose graphics function AllocRasterQ allocates the memory space for
the BitMap. Here is the specification for this function:

Windows 75



AllocRaster (width, height)

The arguments width and height are the maximum dimensions of the array in bits.

The sample code fragment below shows how you can use these functions in defining the
bit-map for your SuperBitMap window:

#define WIDTH 640
#define HEIGHT 200
#define DEPTH 3

struct BitMap BitMap;

InitBitMap(&BitMap, DEPTH, WIDTH, HEIGHT);
for (i = 0; i < DEPTH; i++)

if ((BitMap.Planes[i] = AllocRaster(WIDTH, HEIGHT))
Panic("Hey! No memory for allocating planes!");

= = 0 )

SETTING UP A CUSTOM POINTER

Follow these procedures to replace the default pointer with your own custom pointer:

1. Create a sprite data structure.

2. Call SetPointerQ. If your window is active, the new pointer will be attached
to the window.

An extra requirement is imposed on sprite data (and Image data). It must be located in
chip memory, which is memory that can be accessed by the special Amiga hardware
chips. Chip memory is in the lower 512 Kbytes of RAM. In expanded machines (the
Amiga can be expanded up to 8,000 Kbytes), the Amiga chips still cannot address
memory locations greater than the 512-Kbyte limit. In hexadecimal notation, 512 K
spans memory addresses $00000 to $7FFFF.

To write a program that will survive in any possible configuration of Amiga hardware,
you are obliged to ensure that your sprite and Image data resides in this chip memory.
You can make sure that your data is in chip memory by using the ATOM tool on the
file containing the data. The loader will then automatically load that portion of your
program into chip memory. See the AmigaDOS User's Manual for information about
ATOM and the loader.

76 Windows



As of the time of this writing, the only way to check whether your data is in chip
memory is by comparing its load address after it has been loaded into Amiga memory.
If the address of the end of your data is less than $80000, you are safe. If the address is
equal to or greater than $80000, you must allocate chip memory and copy your data into
the new location. To allocate chip memory, call the Exec function AllocMemQ with
MEMF_CHIP as the requirements argument.

The Sprite Data Structure

A sprite data structure is made up of words of data. In a pointer sprite, the first two
words and the last four words are all 0s. All the other words define the appearance of
the pointer, two words for each line. For example, the data structure for a sprite shaped
like an "X" is shown below. - - -.

: "t -

Windows 77



/* The sprite image for the "X" should have these colors:
130000031
213000313
021303130
002101300

0000. 0000 the dot is a zero that marks the pointer hot
002101300 spot

021202130
212000213
120000021 * /

#define XPOINTER_WIDTH 9
#define XPOINTERJIEIGHT 9
#define XPOINTERJCOFFSET -4
#define XPOINTER_YOFFSET -4

USHORT XPointerfl =
{
0x0000, 0x0000, /* one word each for position and control */

0xCl80,
0x6380,
0x3700,
0x1600,
0x0000,
0x1600,
0x2300,
0x4180,
0x8080,

0x4100,
0xA280,
0x5500,
0x2200,
0x0000,
0x2200,
0x5500,
0xA280,
0x4100,

0x0000, 0x0000,
}

This example sprite creates an Intuition pointer that looks like the one shown in figure
4-6.

78 Windows



;•* "' Figure 4-6: The X-Shaped Custom Pointer

I Attaching the Pointer to the Window

l"
V Yoa call SetPointerQ with the following arguments:

Window
This is a pointer to the window that is to receive this pointer definition.

Pointer
This is a pointer to the data definition of a sprite.

Height
This specifies the height of the pointer; it can be as tall as you like.

Width
This specifies the width of the sprite (must be less than or equal to 16).

XOffset, YOffset
These arguments specify the horizontal and vertical offsets for your pointer from
Intuition's idea of the current position of the pointer. For instance, if you
specify offsets of 0 for both, the top left corner of your image is placed at the
pointer position. If you specify an Xoffset of -7, your sprite is centered over the
pointer position. If you specify an Xoffset of -15, the right edge of your sprite
is over the pointer position.

Windows 79



Chapter 5

Tills chapter describes the workhorses of Intuition—the multipurpose input devices
d gadgets. Most of the user's input to an Intuition application can take place

> wktmgh the gadgets in your screens, windows, and requesters. Gadgets are also used by
l&teition itself for handling screen and v/indow movemest and depth arrangement, as

as window sizing and closing.

Gadgets 81



About Gadgets

i

it i

fJI
j-i?

Gadgets can make the user's interaction with your application consistent, easy, and fun.
There are two kinds of gadgets: predefined system gadgets and custom application
gadgets. The system gadgets help to make the user interface consistent. They are used
for dragging and arranging the depth of screens and for dragging, sizing, closing and
arranging the depth of windows. Since they always have the same imagery and always
reside in the same location, they make it easy for the user to manipulate the windows
and screens of any application.

Application gadgets add power and fun to In tuition-based programs. These gadgets can
be used in a multitude of ways in your programs. You can design your own gadgets for
your windows and requesters.

There are four basic types of application gadgets:

o Boolean gadgets elicit true/false or yes/no kinds of answers from the user.

o Proportional gadgets are flexible devices that you use to get some kind of pro-
portional setting from the user or to simply display proportional information.
With the proportional gadget, you can use imagery furnished by Intuition or
design any kind of image you want for the slider or knob used to pick a propor-
tional setting.

o String gadgets are used to get text from the user. A number of editing func-
tions are available for users of string gadgets.

o The integer gadget is a special class of string gadget that allows the user to
enter integer values only.

Although system gadgets are always in the borders of windows and screens, your own
gadgets can go anywhere in windows or requesters and can be any size or shape.

Application gadgets are not directly supported in screens. Placing a gadget in a back-
drop window allows you to receive gadget-related messages through that window's
input/out channels. See chapter 8, "Input and Output Methods," for details.

You can choose from the following ways of highlighting gadgets to emphasize that the
gadget has been selected:

o Alternate image or alternate border.

o A box around the gadget.

o Color change.

82 Gadgets



cafl elect to have your gadgets change in size as the user sizes the window so that
remain proportional to the size of the window. Also, window gadgets can be

g relative to one of the window's borders so that they move with the borders as
i i t user shapes or sizes the window. If you want the gadget in the border, as are the

gadgets, Intuition can adjust the border size accordingly.

typically, the user selects a gadget by moving the pointer within an area called the
gskct box; you define the dimensions of this area. Next, the user takes some action that
faffes according to the type of gadget. For a Boolean gadget, the user may simply
c&ocse an action by clicking the mouse button. For a string or integer gadget, a cursor
appears and the user enters some data from the keyboard. For a proportional gadget,
i le sser might either move the knob with the mouse or click the mouse button to move
lie knob by a set increment.

Although you attach a list of predefined application gadgets when you define a window
m requester structure, you can make changes to this list later. You can enable or dis-

gadgets, add or remove gadgets, modify the internal states of gadgets, and redraw
or all of the gadgets in the list.

one of your application gadgets is selected by the user, your program learns about
i$ from cither the IDCMP or the console device. See chapter 8, "Input and Output
Mtthods," for details about these messages.

^System Gadgets

ii automatically attaches system gadgets to every screen. For windows, you
which system gadgets you want. The system gadgets for screens are for dragging

depth arrangement. The system gadgets for windows for are dragging, depth
aJr*Bgement, sizing, and closing.

%stttSD gadgets have fixed, standard locations in screens and windows, as shown in table
5-J (we also figure 5-1).

Gadgets 83



Table 5-1: System Gadget Placement in Windows and Screens

System
Gadget

Sizing

Dragging

Depth arrangers

Close

Location

Lower right

Entire title bar in all areas
not used by other gadgets

Top right

Top left

Your program need never know that the user selected a system gadget (with the excep-
tion of the close gadget); you can attach these gadgets to your windows and let Intuition
do the work of responding to the user's wishes.

• A e Hi ndow=3Qa|T]
H e l l o World

Figure 5-1: System Gadgets in a Low-resolution Window

84 Gadgets



GADGET

ths user selects the window-sizing gadget, Intuition is put into a special state.
user is allowed to elongate or shrink a rectangular outline of the window until the
achieves the desired new shape of the window and releases the select button. The

is then reestablished in the new shape, which may involve asking the application
& redraw part of its display. For more information about the application's responsibili-
ties is sizing, see the discussion about preserving the display in chapter 4, "Windows."

You attach the sizing gadget to your window by setting the WINDOWSIZING flag in
tl« Flags variable of the NewWindow structure when you open your window.

If ?08 are using the IDCMP for input, you can elect to receive a message when the user
Uismpts to size the window. A special IDCMP flag, SIZEVERIFY, allows you to hold
0& window sizing until you are ready for it. See chapter 8, "Input and Output
J&tfeods," for more information about SIZEVERIFY.

©EFTH-ARRANGEMENT GADGETS

depth arrangers come in pairs—one for bringing the window or screen to the front
:* *he display and one for sending the window or screen to the back. Notice that the
L laai depth arrangement of windows and screens is transparent to your program. The
$ft!y lime you might learn about it even indirectly is when Intuition notifies your pro-
gram that it needs to refresh its display.

attach the depth arrangement gadgets to your window by setting the
^INDOWDEPTH flag in the Flags variable of the NewWindow structure when you

your window. You get screen depth arrangement gadgets automatically with every
n you open.

BRAGGING GADGET

ih« dragging gadgets are also known as drag bars because they occupy the entire title
b*r area that is not taken up by other gadgets. Users can slide screens up and down,
?"vach as some classroom blackboards can be moved, to reveal more pertinent informa-

in> They can slide windows around on the surface of the screen to arrange the display
any way they want.

Gadgets 85



In dragging a window, the user actually drags a rectangular outline of the window to the
new position and releases the select button. The window is then reestablished in its new
position. As in window sizing, this may involve asking the application to redraw part of
its display.

If you want the window drag gadget, set the WINDOWDRAG flag in the Flags variable
of the NewWindow structure when you open your window. You get the screen drag
gadget automatically with every screen you open.

CLOSE GADGET

The close gadget is a special case among system gadgets, because Intuition notifies your
program about the user's intent but doesn't actually close the window. When the user
selects the close gadget, Intuition modifies some internal states and then broadcasts a
message to your program. It is then up to the program to call GloseWindowQ when
ready. You may want or need to take some actions before the window closes; for
instance, you may want to bring up a requester to verify that the user really wants to
close that window.

To get the window close gadget, set the WINDOWCLOSE Sag in the Flags variable of
the NewWindow structure when you open your window.

Application Gadgets

Intuition gadgets imitate real-life gadgets. They are the switches, knobs, controllers,
gauges, and keys of the Intuition environment. You can create almost any kind of
gadget that you can imagine, and you can have it do just about anything you want it to
do. You can create any visual imagery that you like for your gadgets, including combin-
ing text with hand-drawn imagery or supplying coordinates for drawing lines. You can
also choose a highlighting method to change the appearance of the gadget after i£ is
selected. Ail of this flexibility gives you the freedom to create gadgets that mimic real
devices, such as light switches or joysticks, as well as the freedom to create devices that
satisfy your own unique needs.

86 Gadgets



3SNDEBING GADGETS

V ts& draw your gadgets by hand, specify a series of lines for a simple line gadget, or
^ so imagery at all.

Gadgets

you are allowed to supply a hand-drawn image, there is no limit to the designs
css create for your gadgets. You can make them simple and elegant or whimsical

$ ostrsg&ons. You design the imagery using one of Amiga's many art tools and then
your design into an instance of an Image structure. Figure 5-2 shows an

cf a gadget made of hand-drawn imagery. It also shows how you can use an
image when the gadget is selected.

•4 J*i

. VI ;

5-2: Hand-drawn Gadget — Unselected and Selected

a incorporate a hand-drawn image into your gadget by setting the GADGMAGE Sag
$& gadget Tariabie Flags to indicate that this gadget should be rendered as aa

Them you put the address of your Image structure into the gadget variable

y <•*•

Gadgets 87



i -

For more information about creating an Image structure, see chapter 9, "Images, Line
Drawing, and Text."

Line-Drawn Gadgets

You can also create simple designs for gadgets by specifying a series of lines to be drawn
as the imagery of your gadget. These lines can go around or through the select box of
your gadget, and you can specify more than one group of lines, each with its own color
and drawing mode. You create line-drawn imagery for your gadget by first deciding on
the color and placement of the lines.

Figure 5-3 shows an example of a gadget that uses line-drawn imagery. It also shows an
example of the complement-mode method of highlighting a gadget when it is selected.
Furthermore, it shows additional text that has been included in the gadget imagery.

Figure 5-3: Line-drawn Gadget — Unselected and Selected

After deciding on the placement and color of your lines, you create an instance of a
Border structure to describe your design. You incorporate the Border structure of
your line-drawn imagery into your gadget by not setting the GADGIMAGE flag in the
gadget's Flags variable, thus specifying that this is a Border, not an Image. Also, you
put the address of your Border structure into the gadget variable GadgetRender.

88 Gadgets



'i

f - ' ~ +

m(xe information about creating a Border structure, see chapter 9, "Images, Line

wing, and Text."î ritwing,

without Imagery

can also create gadgets that have no imagery at all. For instance, you may want to
the user's mouse activity without cluttering the display with unnecessary graph-

ics. Aa example of such a gadget is the window and screen dragging gadget, which
displays no actual imagery. The title bar itself sufficiently implies the imagery of the

specify no imagery by not setting the gadget's GADGIMAGE flag and by setting
the GftdgetRender variable to NULL. -

<JSEK SELECTION OF GADGETS

the user positions the pointer over a gadget and presses the select button, that
becomes "selected" and is immediately highlighted. Intuition has two different

jr&ys of notifying your program about gadget selection.

SJ you want the program to find out immediately when the gadget has been selected, you
Caa set the GADGIMMEDIATE flag in the Activation field of the Gadget structure.
When the user selects that gadget, an IDCMP event of class GADGETDOWN will be

ived. If you set only this flag, the program will hear nothing more about that gadget
it is selected again.

. the other hand, if you want to be absolutely sure that the user wanted to select the
gldget, you can set the RELVERIFY flag (for "release verify"). When RELVERIFY is

.*s4 «tad the user selects the gadget, the program will learn that the gadget was selected
if the user still has the pointer over the select box of the gadget when the select

is released. You may want to know this about some gadget selections—for
j:^ instance, the window close gadget—whose consequences may be serious. If you set the
:"-' RBLVERIFY flag, the program will learn about these events via an IDCMP message of

ths class GADGETUP. There are two main benefits to RELVERIFY: the unsure user
gets one last chance to reconsider, and using RELVERIFY helps avoid casual errors

- caased by the user brushing against or resting fingers on the mouse button.

if yoa want the program to receive both a GADGETDOWN and GADGETUP message,
s*% both the GADGIMMEDIATE and RELVERIFY flags.

Gadgets 89



GADGET SELECT BOX

To use a gadget, the user begins by moving the pointer into the gadget select box. You
define the location and dimensions of the select box in the Gadget data structure. The
location is an offset from one of the corners of the display element (window, screen, or
requester) that contains the gadget. You place the left and top coordinates in the
LeftEdge and TopEdge fields of the gadget structure.

LeftEdge describes a coordinate that is either an absolute offset from the left edge of
the element or a negative offset from the current right edge. The offset method is deter-
mined by the GRELRIGHT flag. For instance:

o If GRELRIGHT is cleared and LeftEdge is set to 5, the select box of the gadget
starts 5 pixels from the left edge of the display element.

o If GRELRIGHT is set and LeftEdge is set to -5, the select box of the gadget
starts 5 pixels left of the (current) right edge.

In the same way, TopEdge is either an absolute offset from the top of the element or a
negative offset from the current bottom edge, according to how the flag GRELBOTTOM
is set:

o If GRELBOTTOM is cleared, TopEdge is an absolute offset from the top of
the element.

o If GRELBOTTOM is set, TopEdge is a negative offset from the current bottom
edge.

Similarly, the height and width of the gadget can be absolute or relative to the height
and width of the display element in which it resides. If you set the width of a window
gadget to -28, for example, and you set the gadget's GRELWIDTH flag, then the
gadget's select box will always be 28 pixels less than the width of the window. If
GRELWIDTH is not set and you set the width of the gadget to 28, the gadget's select
box will always be 28 pixels wide. The GRELHEIGHT flag has the same effect on the
height of the gadget select box.

Here are some examples of how you can take advantage of the special relativity modes of
the select box.

o Consider the Intuition window sizing gadget. The LeftEdge and TopEdge of
this gadget are both defined relative to the right and bottom edges of the win-
dow. No matter how the window is sized, the gadget always appears in the
lower right corner.*'

90 Gadgets



o In the window-dragging gadget, the LeftEdge and TopEdge are always abso-
lute in relation to the top left corner of the window. Also, Height is always an

: absolute quantity. Width of the gadget, however, is defined to be zero. When
Width is combined with the effect of the GRELWIDTH flag, the dragging
gadget is always as wide as the window.

o Assume that you are designing a program that has several requesters, and each
requester has a pair of "OK" and "CANCEL" gadgets in the lower left and
lower right corners of the requester. You can design "OK" and "CANCEL"
gadgets that can be used in any of the requesters simply by virtue of their
positions relative to the lower left and lower right corners of the requester.
Regardless of the size of the requesters, these gadgets appear in the same rela-
tive positions.

The GRELRIGHT, GRELBOTTOM, GRELWIDTH, and GRELHEIGHT flags are set in
the Flags field of the Gadget structure.

t

GADGET POINTER MOVEMENTS

If you set the FOLLOWMOUSE flag for a gadget, you will receive mouse movement
broadcasts as long as the gadget is selected. You may want to follow the mouse, for
example, in a sound-effects program in which you use the mouse movement to change
some quality of the sound. You might also want to follow the mouse in a game in which
you use it for aiming a weapon.

The broadcasts received differ according to the following flag settings:

o If you set the GADGIMMEDIATE and RELVERIFY flags the program learns
that the gadget was selected, gets some mouse reports (at least one), and finds
out that the mouse button was released over the gadget.

o If you set only the GADGIMMEDIATE flag, the program learns that the gadget
was selected and get some mouse reports. Then the mouse reports will stop
(when the user releases the select button), although the program will have no
way of knowing for sure that this has happened.

o If you set only the RELVERIFY flag, the program gets some mysterious,
anonymous mouse reports (which may be just what you want to get) followed,
perhaps, by a release event for a gadget.

o If you set neither the GADGIMMEDIATE nor the RELVERIFY flag, the pro-
gram gets only mouse reports. This may be exactly what you want the program
to receive.

Gadgets 91



The FOLLOWMOUSE, GADGIMMEDIATE, and RELVERIFY flags are all set in the
Activation field of the Gadget structure.

GADGETS IN WINDOW BORDERS

In windows only, you can elect to put your own gadgets in the borders. In the Gadget
structure, you set one or more of the border flags to tuck your gadget away into the
window border. Setting these flags also tells Intuition to adjust the size of the window's
borders to accommodate the gadget.

Note that the borders are adjusted only when the window is opened. Although you can
add and remove window gadgets after the window is opened, with AddGadgetQ and
RemoveGadget(), Intuition does not readjust the borders.

Note also that you can put a given gadget in more than one border by setting more than
one border flag. Ordinarily, it makes sense to put a gadget only into two adjoining
borders. If you set both side border flags or both the top and bottom border flags for a
particular gadget, you get a window that is all border.

The border flags are called RIGHTBORDER, LEFTBORDER, TOPBORDER, and
BOTTOMBORDER; they are set in the Activation field of the gadget structure.

MUTUAL EXCLUDE

NOTE: As of the time this was published, this feature had not been implemented.

If a gadget is selected and a bit has been set in the MutualExclude variable of the
gadget, the gadget corresponding to that bit (for example, bit 0 set refers to the first
gadget in the gadget list, bit 2 to the third, and so on) becomes disabled. Intuition sets
or clears the appropriate bits in the disabled gadgets and changes the display to reflect
the new state of affairs. It is up to your program to note internally, as needed, that the
other gadgets have been disabled. Note that there is no reason to limft yourself to 32
gadgets in the gadget list. However, the mutual exclude feature works only on the first
32 gadgets in a list.

92 Gadgets



GADGET HIGHLIGHTING

•• a caa change the appearance of a selected gadget to let the user know that the gadget
j ^ f c d e e d been selected.

select a highlighting method by setting one of the highlighting bits in Flags. Note
yon must specify one of the highlighting values. If you do not want any highlight-
aefctheGADGHNONEbit.

methods of highlighting after selection are described below.

iting by Color Complementing

can highlight by complementing all of the colors in the gadget's select box. In this
•"Slcxt, complementing means the complement of the binary number used to select a

color register. For example, if the color in color register 2 is used (binary 10)
e of the pixels in the selected gadget, those pixels get changed to whatever color is

register 1 (binary 01). Figure 5-3 shows an example of complement highlighting.
that only the select box of the gadget is complemented; the text, which is outside
select box, is not disturbed. See chapter 9, "Images, Line Drawing, and Text," for

information about complementing and about color in general.

flighting by Drawing a Box

*.* highlight by drawing a simple border around the gadget's select box, set the
'.. \&CHBOX bit in the Flags field.

with an Alternate Image or Alternate Border

can supply alternate Image or Border imagery as highlighting. When the gadget
'ih selected, the alternate Image or Border is displayed in place of the nonhighlighted

If the nonhighlighted imagery is an Image, the highlight imagery should be an
* as well; the same is true for Border imagery. Figure 5-2 shows an example of

od of highlighting. For this highlighting method, you should set the
:tB.ender field of the Gadget structure to point to the Image structure

structure for the alternate display.
or

Gadgets 93



An Image or Border structure contains a set of coordinates that specifies its location
when displayed. Intuition renders the image or border relative to the top left corner of
the gadget's select box.

For information about how to create an Image or Border structure, see chapter 9,
"Images, Line Drawing, and Text."

GADGET ENABLING AND DISABLING

You can disable a gadget so that it cannot be selected by the user. When a gadget is
disabled, its image is "ghosted," and it cannot be selected. "Ghosted" means that the
normal image is overlaid with a pattern of dots, thereby making the image less distinct.
Before you first submit your gadget to Intuition, you initialize whether your gadget is
disabled by setting or not setting the GADGDISABLE flag in the gadget's Flags field.
If you always want the gadget to be enabled, you can ignore this flag.

After you have submitted a gadget for Intuition to display, you can change its current
enable state by calling OJUGadget() or OffGadgetQ. If it is a requester gadget, the
requester must currently be displayed. If you use OnGadgetQ to enable a previously
disabled gadget, its image is returned to its normal, nonghosted state.

BOOLEAN GADGET TYPE

Boolean gadgets are simple TRUE or FALSE gadgets. You can choose from two
methods of selecting such gadgets—hit select or toggle select

o Hit select means that when the gadget is hit (that is, when the user moves the
pointer into the select box and presses the mouse select button) the gadget
becomes selected and the select highlighting method is employed. When the
mouse select button is released, the gadget is unselected and unhighlighted.

o Toggle select means that when the gadget is hit, it toggles between selected
and unselected. That is, if the user selects the gadget, it remains selected
when the user releases the button. To "unselect* the gadget, the user has to
repeat the process of hitting the gadget. You can have the imagery reflect the
selected/unselected state of the gadget by supplying an alternate image as the
highlighting mode of the gadget. When the gadget is selected, the chosen
highlighting method is employed.

94 Gadgets



o

You need
Gadget S

cci have an effect upon toggle-selection: s

%s THJGLESELECT flag in the Activation field of the
-rr vsat the gadget to be toggle-selected

The
current
the gadget *'il
ting the gadget t: j
any time to <te*«nzi

L Gadget structure Flags determines the initial and
2 .rite of a toggle-selected gadget. If SELECTED is set,

ced. You can set the SELECTED Sag before submit-
inen if you like. The program can examine this flag at
nie5her the user has selected this gadget.

& Boolean gadget is ttemtzr the user, the application will hear about it. If it is
'« selected, the ^ p p l i ^ r n l l never know. In this respect, Boolean gadgets differ
ai siring or pro#*c>rtioî  SSE&S, which always are set to some value, even if that
l?s b the one i i & ^

• WtOPORTIONAL

gadget
& proportional se
of ail, you car*

iy Sexible input devices. You can use one of these to
:n::he user or to display a proportional value to the user,

gadget to accomplish both of these feats.

ht user can adjust the KSC,.of. a proportional gadget to specify how much of some
bta data of aJ t r fe is desired. For instance, the user may adjust a propor-

J p^dget to specify & j^am. in a text Sle or a desired volume setting. The current
««; of & proportwual JSSE may also be set by the program as an indicator of how

of some measurable sator attribute is visible or available. For instance, the pro-
$*Tt»aal gadget of a kxiscor's window might show how many Uses are currently
;*»ag displayed out of the saJines in the text file. A graphics program may allow the
*H?.r to m% the amount o! screen, and blue in a color, providing a proportional gadget
.':«• e^ch of the thre* hiwt ^ grapbics program would initialize these settings to desig-
ui\» how much red, greei.^Kblue ^ already contained in the color. An audio program
m'ty d%$\ with the fo£B&.*%i.:.the sound being produced by providing a gadget that
I»OKS the user to ict the-sine aBd to see what the current volume is hi relation to
ihs blghsst and lowest PCEE^ volume settings.

Frcportional gadgets can, ziik of these things and more because they can take many
h d sizes aud ge; xraaonal s&ettings oa either the vertical or horizontal axis or

A proportbaal gadget feaarssral parts that work together to give the gadget its fexibil-
are the the pctTBEatoa, ifce body variables, the knob, and the container.

Gadgets 95



o The HorizPot and VertPot variables contain the actual proportional values. The
word pot is short for potentiometer, which is an electrical analog device that can be
used to adjust some variable value. The proportional gadget pots enable the user or
program to set how much of the total data is visible or available. Because they
represent fractional parts of a whole, the values in these variables ranges from 0 to
(almost) 1. The data, then, ranges from none visible or available to all of it visible
or available.

There are two pot variables because proportional gadgets are adjustable on the hor-
izontal axis or the vertical axis or both. For example, a gadget that allows the user
to center the screen on the video display or to center his gunsights on a fleeing
enemy must be adjustable on both axes.

Pot variables are typically initialized to 0 and change while the user is playing with
the gadget. You can initialize the pot variables to whatever you want. In the case
of the color gadgets, you might want to initialize them to some current color. The
program may read the values in the pots at any time after it has submitted the
gadget to the user via Intuition. The values will always have the current settings as
adjusted by the user.

o The HorizBody and VertBody variables describe the increment, or typical step
value, by which the pot variables change. For example, the proportional gadgets for
color mixing might allow the user to add or subtract a color by 1/16 of the full value
each time, as there are 16 possible settings for each RGB (red, green, blue) com-
ponent of a color on the Amiga. The proportional gadget for centering the screen
might allow the user to move the screen vertically a line at a time, or you may
choose to set the step increment to a large number of lines; leaving the fine-
resolution tuning to the use of the gadget's knob.

Body variables are also used in conjunction with the auto-knob (described below) to
display for the user how much of the total quantity of data is directly available. For
instance, if the user is working on a text file that is fifteen lines long, and five lines
of the file are currently visible in the window, then you can graphically represent the
total size of the file by setting the body variable to one-third
(OxFFFF / 3 = 0x5555). In this case, the auto-knob would fill one-third of the con-
tainer (the gadget box), which represents the proportion of the visible text lines to
the total number of text lines. Also, the user can tell at a glance that clicking the
mouse button with the cursor in the container (not on the knob) will advance the
text file by one-third in any direction, to the next "window" of data.

You can set the two body variables to the same or different increments. When the
user clicks the mouse button in the container, your pot variables are adjusted by the
amount set in the body variables.

o The knob is the object actually manipulated by the user to change the pot variables
by the increments specified in the body variables. The knob is directly analogous to
proportional controls, such as the volume knpb on a radio, if the Intuition knob is

96 Gadgets



restricted to one axis of movement. If the knob is free to move on both axes, it is
more analogous to, say, a control-stick of an airplane. The user can move the knob
by placing the pointer on it and dragging it on the vertical or horizontal axis or by
moving the pointer near it (within the select box) and clicking the mouse button.
With each click, the pot variable is increased or decreased by one increment, defined
by the settings of the body variables. The current position of the knob reflects the
pot value. For instance, in the color-selection gadget, the knob slides in a long nar-
row container. As the user moves the knob to the right, more of that color is added.
When the knob is halfway along the container, the value in HorizPot is also half-
way. For a picture of this color selection gadget, see the Preferences display in
figure 11-2.

You can design your own imagery for the knob or use Intuition's handy auto-knob.
The auto-knob is a rectangle that can move on either axis and changes its length or
height according to the current body settings. The auto-knob also proportionally
changes in size when the user sizes the window. Therefore, you can place an auto-
knob in a proportional gadget that adjusts its size relative to the size of a window,
and the auto-knob will always be proportionally correct. For example, consider a
proportional gadget with auto-knob being used as a scroll bar in the right border of
a window. If the VertBody variable is set to show that one-third of a text file is
being displayed in the window, the auto-knob fills one-third of the container. If the
user makes the window (and therefore the container) larger, the auto-knob gets
larger, too, so that it still visually represents one-third. For an example of such a
scroll bar, see figure 5-4. This is yet another visual aid for the user, one that helps
make the user interface of the Amiga as intuitive to use as possible.

o The container is the area in which the knob can move. It is actually the select box
of the gadget. The size of the container, like that of any other gadget select box,
can be relative to the size of the window.

The pot variable is a 16-bit word that contains a value ranging from 0 to OxFFFF. This
value range represents a fixed-point fraction that ranges from 0 to (almost) 1. You need
to convert the current setting of the pot variable to a number that you can use. The
proportional gadget example below shows how to do this conversion.

• l

Gadgets 97



* Conversion of a pot variable
*

#define MAXSECONDS 4
#define MILLION 1000000

LONG RealTime;
SHORT Seconds, MicroSeconds;

/* an arbitrary assignment •/
/* a real assignment */

The next line converts the 16-bit fraction into a 32-bit intermediate value that expresses
integer and fractional parts of the constant MAXSECONDS. The integer portion is in
the upper 16 bits, and the fractional remainder is in the lower 16.

RealTime = (PropInfo.HorizPot + 1) * MAXSECONDS;

This line gets the number of seconds, which is the integer portion:

Seconds = RealTime >> 16;

Because the lower 16 bits represent only a fraction, this value must be multiplied by
some other meaningful constant if it is to mean something real. Because the fractional
portion represents microseconds, and there are a million microseconds to the second,
multiply the fraction by one million. Then, in the integer portion (the upper 16 bits),
you will find the whole number of millionths of a second contained in RealTime. (By
the way, in the lower 16 bits of the multiplication, which are shifted away into the bot-
tomless bit bucket, is a fraction representing the fractional part of a millionth of a
second contained in RealTime. To be technically accurate, you should test whether
this fraction is greater than or equal to 0x8000 (one-half) and round your
MicroSeconds result up if it is.)

MicroSeconds = ((RealTime & OxFFFF) * MILLION) >> 16;

You set up a proportional gadget as you do any other gadget, except for the extra
Proplnfo data structure (shown below under "Using Application Gadgets"). Carry out
the following procedures to set up the Proplnfo structure:

o If you want the auto-knob, set the AUTOKNOB flag and set Gadget-Render
to point to an Image. In this case, you do not initialize the Image structure.

If you want your own knob imagery instead, GadgetRender points to a real
Image or Border structure.

98 Gadgets



o Set either or both of the FREEHORIZ and FREEVERT flags according to the
direction(s) you want the knob to move.

o Initialize either or both of the HorizPot and VertPot variables to their start-
ing values.

o Set either or both of the HorizBody and VertBody variables to the increment
you want. If there is no data to show or the total amount displayed is less than
the area in which to display it, set the body variables to the maximum
(OxFFFF).

o The remaining variables and flags are used by Intuition.

In the Gadget structure, set the GadgetType field to PROPGADGET and set the
Speciallnfo field to point to an instance of a Proplnfo structure.

After the gadget is displayed, your program can call ModifyProp() to change the flags
and the pot and body variables. The gadget's internal state will be recalculated and the
imagery will be redisplayed to show the new state.

If the program receives a message saying that the user has played with this gadget, the
program can examine the KNOBHIT flag in the Proplnfo structure. This flag indicates
whether the user hit the knob or hit in the container but not on the knob itself. If the
flag is set, the user hit the knob and moved it.

STRING GADGET TYPE

A string gadget prompts the user to enter some text. Like a proportional gadget, a
string gadget can be used in many different ways. String gadgets also require their own
special structure, called the Stringlnfo structure.

A string gadget consists of a container and buffers to hold the strings. You supply two
buffers for the string gadget. The input buffer contains the "initial" string, and the
other is an optional "undo" buffer. You preset the initial string; by doing so you give
the user the choice of editing the initial string or simply accepting the default initial
string.

If a string gadget has an undo buffer, the current string is copied into the undo buffer
when the user selects the gadget. The user can revert to this initial string at any time
by typing "Right AMIGA - Q." (To type this key sequence, the user holds down the
right AMIGA key while pressing the Q key.)

Gadgets 99



Because there is only one active gadget at a time, all string gadgets can share the same
undo buffer as long as the undo buffer is as large as the largest input buffer.

You specify the size of the container into which the user types the string. Like the con-
tainer for the proportional gadget, the container for the string gadget is its select box.
As the user types text into a string gadget, the characters appear in the gadget's con-
tainer.

You can change the justification of the string as it is displayed in the container. The
default is left justification. If the flag STRINGCENTER is set, the text is center-
justified; if STRINGRIGHT is set, the text is right-justified.

An important and useful feature of the string gadget is that you can supply a buffer to
contain more text than will fit in the container. This allows the program to get text
strings from the user that are much longer than the visible portion of the buffer. Intui-
tion maintains the cursor position and scrolls the text in the container as needed.

You can initialize the input buffer to any starting value, as long as the initial string is
terminated with a null. If you want to initialize the buffer to the null string (no charac-
ters), you must put a null character in the first position of the buffer. After the gadget
is deselected by the user (either by hitting the RETURN key or by using the mouse to
select some other operation), the program can examine this buffer to discover the current
string.

String gadgets feature "auto-insert," which allows the user to insert ASCII characters
wherever the cursor is. The simple editing functions shown in table 5-2 are available to
the user.

100 Gadgets



i \lV

Table 5-2: Editing Keys and Their Functions

Key(3)

or

Function

Move the cursor around the current string.

Move the cursor to the beginning or end of
current string.

Delete the character under the cursor.

Delete the character to left of cursor.

Terminate input and deselect the gadget. If
the RELVERIFY activation flag is set, the
program is notified that the user has select-
ed this gadget.

Right AMIGA - Q Undo (cancel) the last editing change to the
string.

Right AMIGA - X Clears the input buffer. The undo buffer is
left undisturbed.

SHIFT 4- or

DEL

BACKSPACE

RETURN

You can supply any type of image for the rendering of this gadget—Image, Border, or
no image at all. For this release of Intuition, you must specify that the highlighting is of
type GADGHCOMP (complementary), and you cannot supply an alternate image for
highlighting.

The string gadget inherits the input attributes and the font of the screen in which it
appears. If you have not done anything fancy, the strings will appear in the default font
with simple ASCII key translations. If you are using the console device for input, you
can set up alternate key-mapping any way you like. If you do, Intuition will use your
key map. See the Amiga ROM Kernel Manual for more information about the console
device and key-mapping.

For a string gadget, you set the GadgetType field to STRGADGET in the Gadget
structure. Also set the Speciallnfo field to point to an instance of a Stringlnfo struc-
ture. This structure contains buffer and container information.

Gadgets 101



INTEGER GADGET TYPE

The integer gadget is really a special sort of string gadget. You initialize it as you do a
string gadget, except that you also set the flag LONGINT in the gadget's Activation
variable. The user interacts with an integer gadget using exactly the same rules, but
Intuition filters the input and allows the user to enter only a unary sign and digits. The
integer gadget returns a signed 32-bit integer in the Stringlnfo variable Longint.

To initialize an integer gadget in this release of Intuition, you need to preset the buffer
by putting an initial integer string in it. It is not sufficient to initialize an integer gadget
by setting a value in the Longint variable.

To specify that this string gadget is an integer gadget, set the flag LONGINT in the
gadget's Activation variable.

COMBINING GADGET TYPES ..

You can make some very useful gadgets by combining types. As an example, you can
make a horizontal or vertical scroll bar with a proportional gadget and two Boolean
gadgets. Figure 5-4 shows an example.

"OPEN FAlNtlNG-
PLEASE SELECT A PAINTING NAHE

OR TYPE IN A NAHE
face

OK? CANCELI

m

Figure 5-4: Example of Combining Gadget Types

102 Gadgets



If the scroll bar goes in the right border of the window, you may wish to place the
system sizing gadget in the right border by setting the flag SIZEBRIGHT in the
NewWindow structure. Remember that the sizing gadget has to fit in either the right
or the bottom border. If you are going to cause the right edge border to be wide enough
to accommodate a scroll bar, then you might as well put the sizing gadget there, too.

Using Application Gadgets

To create application gadgets, follow these steps:

1. Create a structure for each gadget.

2. Create a linked list of gadgets for each display element (window or requester)
that has gadgets attached to it.

3. Set the Gadgets variable in your window or requester structure to point to the
first gadget in the list.

Each Gadget structure includes specifications for:

o An Image, a Border, or NULL for no imagery.

o The select box of the gadget, which is the zone Intuition uses to detect if the
user is selecting that gadget.

o Left and top offsets that are either absolute or relative to the current borders of
the window or requester containing the gadget.

o Width and height dimensions that are absolute or relative to the current size of
the window or requester containing the gadget.

o Gadget type—Boolean, integer, proportional, or string.

o The method of highlighting the gadget, if any.

o How you want Intuition to behave while the user is playing with your gadget.

Gadgets 103



GADGET STRUCTURE

Here is the general specification for a Gadget structure:

struct Gadget

{
struct Gadget *NextGadget;
SHORT LeftEdge, TopEdge, Width, Height;
USHORT Flags;
USHORT Activation;
USHORT GadgetType;
APTR GadgetRender;
APTR SelectRender;
struct IntuiText *GadgetText;
LONG MutualExclude;
APTR Speciallnfo;
USHORT GadgetID;
APTR UserData;

The variables and flags in the Gadget structure are explained below.

Next Gadget

This is a pointer to the next gadget in the list. The last gadget in the list should
have a NextGadget value of NULL.

LeftEdge, TopEdge, Width, Height

These variables describe the location and dimensions of the select box of the gadget.
Both location and dimensions can be either absolute or relative to the edges and size
of the window, screen, or requester that contains the gadget.

LeftEdge and TopEdge are relative to one of the corners of the display element,
according to how GRELRIGHT and GRELBOTTOM are set in the Flags variable
(see below).

Width and Height can be either absolute dimensions or a negative increment to
the width and height of a requester, screen, or alert or the current width and height
of a window, according to how the GRELWIDTH and GRELHEIGHT flags are set
(see below). -

104 Gadgets



Flags

The Flags field is shared by your program and Intuition. See the section below
called "Flags" for a complete description of all the flag bits.

Activation

This field is used for information about some gadget attributes. See the "Activa on
Flags" section below for a description of the various flags.

GadgetType

This field contains information about gadget type and in what sort of display ele-
ment the gadget is to be displayed.

You must set one of the following flags to specify the type:

BOOLGADGET
Boolean gadget type.

STRGADGET
String gadget type.

For an integer gadget, also set the LONGINT flag. See the "Flags" section
below.

PROPGADGET
Proportional gadget type.

'The following flags tell Intuition if the gadget is for a requester or a Gimmezerozero win-
dow:

GZZGADGET
If this gadget is for a Gimmezerozero window, setting this flag puts the gadget
in the special bit-map for gadgets and borders (and out of your inner window).
If you do not set this flag, the gadget will go into your inner window. If the des-
tination of this gadget is not a Gimmezerozero window, clear this bit.

REQGADGET
Set this bit if this is a requester gadget; otherwise, clear it.

GadgetRender
This is a pointer to the Image or Border structure containing the graphics of this
gadget. If this field is set to NULL, no rendering will be done.

NOTE: To tell Intuition what sort of data is pointed to by this variable, set or clear
the Flag bit, GADGMAGE.

Gadgets 105



SelectRender

This field contains a pointer to an alternate Image or Border for highlighting.

NOTE: You specify that you want SelectRender by setting the GADGHIMAGE
flag. You specify which type, Image or Border, by setting the same GADGIMAGE
bit that you set for GadgetRender above. SelectRender must point to the same
data type as GadgetRender.

GadgetText

If you want text printed after this gadget is rendered, set this field to point to an
IntuiText structure. The offsets in the IntuiText structure are relative to the top
left of the gadget's select box.

Set this field to NULL if the gadget has no associated text.

MutualEx elude

When this feature is implemented, you will use these bits to describe which, if any,
of the other gadgets are mutually excluded by this one.

Currently, Intuition ignores this field.

Speciallnfo

If this is a proportional gadget, this variable points to an instance of a Proplnfo
data structure. If this is a string or integer gadget, this variable points to a
Stringlnfo data structure. The structure contains the special information needed
by the gadget.

If the gadget is not of type proportional, string, or integer, this variable is ignored.

Gadget©

This variable is strictly for your own use. Assign any value you would like here.
This variable is ignored by Intuition. Typical uses in C are in switch and case
statements, and in assembly language, table lookup.

User Data

A pointer to any general data you would care to associate with this particular
gadget. This variable is ignored by Intuition.

106 Gadgets



FLAGS

The following are the flags you can set in the Flags variable of the Gadget structure.

GADGHIGHBITS
Combinations of these bits describe what type of highlighting you warn when
the user has selected this gadget. There are four highlighting methods to ohoose
from. You must set one of the four flags below.

GADGHCOMP
This flag complements all of the bits contained within this gadget's select
box.

GADGHBOX
This flag draws a box around this gadget's select box.

GADGHIMAGE
This flag displays an alternate Image or Border.

GADGHNONE
Set this flag if you want no highlighting. -

GADGMAGE
Use this bit if you have not set GadgetRender to NULL. Set this flag if the
gadget should be rendered as an Image; clear the flag if it is a Border.

This bit is also used by SelectRender.

GRELBOTTOM
Set this flag if the gadget's TopEdge variable describes an offset relative to the
bottom of the display element containing it. Clear this flag if TopEdge is rela-
tive to the top.

GRELRIGHT
Set this flag if the gadget's LeftEdge variable describes an offset relative to the
right edge of the display element containing it. Clear this flag if LeftEdge is
relative -to the left edge.

GRELWIDTH
Set this flag if the gadget's Width variable describes an increment to the width
of the display element containing the gadget. Clear this flag if Width is an
absolute value.

Gadgets 107



GRELHEIGHT
Set this flag if the gadget's Height variable describes an increment to the height
of the display element containing the gadget. Clear this flag if Height is an
absolute value.

SELECTED
Use this flag to preselect the on/off selected state for a toggle-selected gadget. If
the flag is set, the gadget starts off being on and is highlighted. If the flag is
clear, the gadget starts off in the unselected state.

GADGDISABLED
If this flag is set, this gadget is disabled. If you want to enable or disable a
gadget later on, you can change the current state with the routines
OnGadget() and OffGadgetQ.

You do not need to use this flag if you want the gadget to always remain
enabled.

ACTIVATION FLAGS

Here are the flags you can set in the Activation variable of the Gadget structure:

TOGGLESELECT
When this bit is set, the on/off state of the gadget (and its imagery) toggles each
time it is hit.

You preset the selection state with the gadget Flag SELECTED (see above); the
program later discovers the selected state by examining SELECTED.

GADGIMMEDIATE
Set this bit if you want the program to know immediately when the user selects
this gadget.

RELVERIFY
This is short for "release verify." Set this bit if you want this gadget selection
broadcast to your program only if the user still has the pointer positioned over
this gadget when releasing the select button.

ENDGADGET
This flag pertains only to gadgets attached to requesters. To make a requester
go away, the user must select a gadget that has this flag set.

See chapter 7, "Requesters and Alerts," for more information about requester
gadget considerations.

108 Gadgets



FOLLOWMOUSE
When the user selects a gadget that has this flag set, the program will receive
mouse position broadcasts every time the mouse moves at all.

You can use the following flags in window gadgets to adjust the size of a window's
borders when you want to tuck your own window gadgets out of the way into the
window border:

RIGHTBORDER
If this flag is set, the width and position of this gadget are used in deriving
the width of the window's right border.

LEFTBORDER
If this flag is set, the width and position of this gadget are used in deriving
the width of the window's left border.

TOPBORDER
If this flag is set, the height and position of this gadget are used in deriving
the height of the window's top border.

BOTTOMBORDER
If this flag is set, the height and position of this gadget are used in deriving
the height of the window's bottom border.

The following flags apply to string gadgets:

STRINGCENTER
If this flag is set, the text in a string gadget is center-justified when ren-
dered.

STRINGRIGHT
If this flag is set, the text in a string gadget is right-justified when rendered.

LONGINT
If this flag is set, the user can construct a 32-bit signed integer value in a
normal string gadget. You must also preset the string gadget input buffer
by putting an initial integer string in it.

ALTKEYMAP
This flag specifies that you have an alternate keymap. You also need to put
a pointer to the keymap in the Stringlnfp structure variable AltKeyMap.

Gadgets 109



SPECIALINFO DATA STRUCTURES

The following are the specifications for the structure pointed to by the Speciallnfo
pointer in the Gadget structure.

Proplnfo Structure

This is the special data required by the proportional gadget.

struct Proplnfo

{
USHORT Flags;
USHORT HorizPot;
USHORT VertPot;
USHORT HorizBody;
USHORT VertBody;
USHORT CWidth;
USHORT CHeight;
USHORT HPotRes, VPotRes;
USHORT LeftBorder;
USHORT TopBorder;

};

The meanings of the fields in this structure are as follows:

Flags
In the Flags variable, these general-purpose flag bits can be specified:

AUTOKNOB
Set this if you want to use the auto-knob.

FREEHORIZ
If this is set, the knob can move horizontally.

FREEVERT
If this is set, the knob can move vertically.

KNOBHIT .. „
This is set by Intuition when this knob is hit by the user.

110 Gadgets



PROPBORDERLESS
Set this if you want your proportional gadget to appear without a border drawn
around its container.

Initialize these variables before the gadget is added to the system; then look here for the
current settings:

HorizPot
Horizontal quantity percentage.

VertPot
Vertical quantity percentage.

These variables describe what percentage of the entire body of the stuff is actually
shown at one time:

HorizBody
Horizontal body.

VertBody

Vertical body.

Intuition sets and maintains the following variables:

CWidth
Container real width.

CHeight
Container real height.

HPotRes, VPotRes
Pot increments.

LeftBorder
Container real left border.

TopBorder
Container real top border.

Gadgets 111



Stringlnfo Structure

This is the special data required by the string gadget.

struct Stringlnfo

{
UBYTE *Buffer;
UBYTE *UndoBuffer;
SHORT BufferPos;
SHORT MaxChars;
SHORT DispPos;
SHORT UndoPos;
SHORT NumChars;
SHORT DispCount;
SHORT CLeft, CTop;
struct Layer *LayerPtr;
LONG Longlnt;
struct KeyMap *AItKeyMap;

The meanings of the fields in this structure are given below.

You initialize the following variables and Intuition maintains them:

Buffer
This is a pointer to a buffer containing the start and final string. The string
you write into this buffer must be null-terminated.

UndoBuffer
This is an optional pointer to a buffer for undoing the current entry. If you are
supplying an undo buffer, the memory location should be as large as the buffer
for the start and final string. Because only one string gadget can be active at a
time under Intuition, all of your string gadgets can share the same undo buffer.
However, the undo buffer must be large enough to hold the largest buffer for
starting and final strings.

MaxChars
This must be set to the maximum number of characters that will fit in the
buffer, including the terminating NULL.

BufferPos
This specifies the initial character position of the cursor in the buffer.

112 Gadgets



DiapPos

This specifies the buffer position of the first displayed character.

Intuition initializes and maintains these variables for you:

UndoPos
This specifies the character position in the undo buffer.

NumChars
This specifies the number of characters currently in the buffer.

DispCount
This specifies the number of whole characters visible in the container.

CLeft, CTop
This specifies the top left offset of the container.

LayerPtr
This specifies the Layer containing this gadget.

Longlnt
After the user has finished entering an integer, you can examine this variable to
discover the value if this is an integer string gadget.

AltKeyMap
This variable points to your own alternate keymap; you must also set the
ALTKEYMAP bit in the Activation flags of the gadget.

Gadgets 113



GADGET FUNCTIONS

These are brief descriptions of the functions you can use to manipulate gadgets. For
complete descriptions see Appendix A, "Intuition Function Calls."

Adding and Removing Gadgets from Windows or Screens

Use the following functions to add a gadget to or remove a gadget from the gadget list
of a window.

AddGadget(AddPtr, Gadget, Position)

This function adds a gadget to the gadget list of a window.

AddPt r is a pointer to the window.
Gadget is a pointer to the gadget.
Position is where the new gadget should go in the list.

RemoveGadget(RemPtr, Gadget)

This function removes a gadget from the gadget list of the specified win-
dow.

RemPtr is a pointer to the window from which the gadget is to be
removed.
Gadget is a pointer to the gadget to be removed.

Disabling or Enabling a Gadget

The following functions disable or enable a gadget in a window, screen, or requester.

OnGadget (Gadget ,Ptr,Requester)

This function enables the specified gadget. j

Gadget points to the gadget you want enabled. \
P t r points to a Window structure. [
Requester points to a requester or is NULL. |

OffGadget(Gadget, Ptr, Requester)

This function*1 disables the specified gadget. _ ._ I

114 Gadgets



Gadget points to the gadget to be disabled.
Ptr points to a Window structure.
Requester points to a requester or is NULL.

Redraw the Gadget Display

The following function redraws all of the gadgets in the gadget list of a window or
requester, starting with the specified gadget. You might want to use this if you have
modified the imagery of your gadgets and want to display the new imagery. You might
also use it if you think some graphic operation has trashed the imagery of the gadgets.

RefreshGadgets(Gadgets, Ptr, Requester)

Gadgets points to the gadget where the redrawing should start.
Ptr points to the Window structure.
Requester points to a requester or is NULL.

Modifying a Proportional Gadget

Use the following function to modify the current parameters of a proportional gadget.

ModifyProp(Gadget, Ptr, Requester, Flags, HorizPot, VertPot,
HorizBody, VertBody)
This function modifies the parameters of a proportional gadget. The
gadget's internal state is recalculated and the imagery is redisplayed.

Gadgets 115



Chapter 6

MENUS

This chapter shows how to set up the menus that let the user choose from your
program's commands and options. The Intuition menu system handles all of the menu
display from menu data structures that you set up. If you wish, some or all of your
menu selections can be graphic images instead of text.

Menus 117



About Menus

Intuition's menu system provides you with a convenient way to group together and
display the functions and options that your application presents to the user. For
instance, in a word-processor environment, menus may provide the following functions:

o Access to text files.

o Edit functions.

o Search and replace facilities.

o Formatting capabilities.

o Multiple fonts.

o A general help facility.

In a game, menus may provide the user with choices about how to:

o Load a new game or save the current one.

o Get hints.

o Bring up special information windows.

o Set the difficulty level.

o Auto-annihilate the enemy.

Menu commands are either actions or attributes. Actions are represented by verbs and
attributes by adjectives. An attribute stays in effect until canceled, while a command is
executed and then forgotten. You can set up menus so that some attribute items are
mutually exclusive (selecting an attribute cancels the effects of one or more other attri-
butes), or you can allow a number of attributes to be in effect at the same time. For
example, an adventure game might have a menu list for things that the hero is holding
in his hand. He could hold several small, lightweight objects, but holding the heavy
sword excludes holding anything else. In a database program, you might be able to
choose to send a report to a file, to the window, or to a printer. You could, for example,
send it to both a window and a printer, while the "file" option excludes the other two.

After you set up a linked list of menu structures (called a menu strip) and attach the list
to a window, the menu system handles the menu display. Using this list and any
graphic images you have designed, the menu system displays the menu bar text that
appears across the screen litle bar when requested by the user. It also creates the lists of
menu items and sub-menus that appear at the user's request. The application does not

118 Menus



have to worry about menus until Intuition sends a message with news that the user has
selected a menu item. This message gives the application the number of the selected
item.

You can enable and disable menus and menu items during the display of the window
and make changes to the menus you previously attached to a window. Disabling an
item prevents the user from selecting it, and disabled items are ghosted to look different
from enabled items.

Menu items can be graphic images or text. When the user positions the pointer over an
item, the item can be highlighted through a variety of techniques and can have a check
mark placed next to it. Next to the menu items, you can display command-key
alternatives.

To activate the menu system, the user presses the mouse menu button (or an appropri-
ate command-key sequence) to display the menu bar in the screen title area. The menu
bar displays a list of topics (called menus) that have menu items associated with them
(see figure 6-1).

Project Edit Special Col or Slvape Brush

k

Figure 6-1: Screen with Menu Bar Displayed

When the user moves the mouse pointer to a topic in the menu bar, a list of menu items
appears below the topic name. To select an item, the user moves the mouse pointer in
the list of menu items while holding down the menu button, releasing the button when
the pointer is over the desired item. If an item has a subitem list, moving the pointer
over the item reveals a list of subitems. The user moves the pointer over one of the

Menus 119



subitems and makes a selection in the same way as an item is selected. If there is a
command-key .sequence alternative, the user can make menu selections with the key-
board instead of the mouse. Furthermore, the user can select multiple items by:

o Pressing and releasing the mouse select button without releasing the menu but-
ton. This selects that item and keeps the user in "menu state" so that other
items can be selected.

o Holding down both mouse buttons and moving the pointer over several items.
This is called drag-selecting.

SUBMITTING AND REMOVING MENU STRIPS

Once you have constructed a menu strip, you submit it to Intuition using the function
SetMenuStripQ. You must always remove every menu strip that you have submitted.
When you want to remove the menu strip, you call ClearMenuStripQ. If you want to
change the menu strip, you call ClearMenuStripQ, change the menu, and resubmit it
with SetMenuStripQ.

The flow of events for menu operations should be:

1. OpenWIndowQ.

2. Zero or more iterations of SetMenuStripQ and ClearMenuStripQ.

3. CIoseWindowQ.

Clearing the menu strip before closing the window avoids any of the problems that can
occur if the user is accessing menus when the window is closed.

ABOUT MENU ITEM BOXES

The item box is the rectangle containing your menu items or subitems. You do not have
to describe the size and location of the item or subitem boxes directly. You describe the
size indirectly by how you place items and subitems. Intuition figures out the size of the
minimum box required. It then adjusts the size of the box to make sure your menu
display conforms to certain design philosophy constraints for items and subitems. See
figures 6-2 and 6-3 for examples of item and subitem box structures.

120 Menus



-1

Left edge of the item box can-v ^— Right edge of the item box can
be no further right than this. \ \ be no further left than this.

MENU HEADER

ITEM1

ITEM 2

ITEM 3

^— The item box overlaps the
menu bar by one line.

.•*—The item box is tall enough
#^ to hold your lowest item.

Example Item Box

Figure 6-2: Example Item Box

The item box must start no further right than the leftmost position of the menu
header's select box. It must end no further left than the rightmost position of the menu
header's select box. The top edge of the menu box must overlap the screen's title bar by
one line. The subitem box must overlap its item's select box somewhere.

Menus 121



•Tht" subitem box must overlap
the item's select box somewhere.
(It does not matter where.)

Example Subitem Box

Figure 6-3: Example Subitem Box

ACTION/ATTRIBUTE ITEMS AND THE CHECKMARK

Menu action items are selected and acted upon immediately. Action items can be
selected repeatedly. Every time the user selects an action item, the selection is transmit-
ted to your program.

Menu attribute items, on the other hand, are selected and remain selected until the
attribute is mutually excluded by the selection of some other attribute item. Menu
attribute items, when selected, appear with a checkmark drawn along the left edge of
the item's select box. A selected attribute item cannot be reselected until mutual exclu-
sion causes it to become unselected. See the "Mutual Exclusion" section below for a
description of how this works.

You specify that a particular menu item is an attribute item by setting the CHECKIT
flag in the Flags variable of the item's Menu It em structure. If you set this flag, this
item will have a checkmark drawn next to it whenever it is selected.

122 Menus



You can initialize the state of an attribute item by presetting the item's CHECKED flag.
If this flag is set when you submit your menu strip to Intuition, then the item is con-
sidered to be already selected and the checkmark will be drawn.

You can use the default Intuition checkmark ( y/) or you can design your own and set a
pointer to it in the NewWindow structure when you open a window. See chapter 4,
"Windows," for details about supplying your own checkmark.

If your items are going to be checkmarked, you should leave sufficient blank space at the
left edge of your select box for the checkmark imagery. If you are taking advantage of
the default checkmarks, you should leave CHECKWIDTH amount of blank pixels on
high-resolution screens and LOWCHECKWIDTH amount of blank pixels on low-
resolution screens. These are defined constants describing the pixel width in high and
low resolution. They define the space required by the standard checkmarks (with a bit
of space for aesthetic purposes). If you would normally place the LeftEdge of the
image within the item's select box at 5, and you decide that you want a checkmark to
appear with the item, then you should start the item at 5+CHECKWIDTH instead.
You should also make your select box CHECKWIDTH wider than it would be without
the checkmark.

MUTUAL EXCLUSION

You can choose to have some of your attribute items, when selected, cause other items
to become unselected. This is known as mutual exclusion. For example, if you have a
list of menu items describing the available type sizes for a particular font, the selection
of any type size would mutually exclude all other type sizes. You use the
MutualExclude variable in the Menultem structure to specify other menu items to be
excluded when the user selects an item. Exclusion also depends upon the CHECKED
and CHECKIT flags of the Menultem, as explained below.

o If CHECKIT is set, this item is an attribute item that can be selected and
unselected. If CHECKED is not set, then this item is available to be selected. If
the user selects this item, the CHECKED flag is set and the user cannot then
reselect this item. If the item is selected, the CHECKED flag will be set, and
the checkmark will be drawn to the left of the item.

o If CHECKIT is not set, this is an action item—not an attribute item. The
CHECKED flag is ignored and the checkmark will never be drawn. Mutual
exclusion affects only attribute items.

o If an item is selected that has bits set in the MutualExclude field, the
CHECKIT and CHECKED flags are examined in the excluded items. If any
item is currently CHECKED, its checkmark is erased.

Menus 123



o Mutual exclusion is an active event. It pertains only to items that have the
CHECKIT flag set. Attempting to exclude items that do not have the
CHECKIT flag set has no effect.

It is up to you to note internally as needed that excluded items have been disabled and
deselected.

In the MutualExclude field, bit 0 refers to the first item in the item list, bit 1 to the
second, bit 2 to the third, and so on. In the adventure game example described earlier,
in which carrying the heavy sword excludes carrying any other items, the
MutualExclude fields of the four items would look like this;

Heavy sword
Stiletto
Rope
Canteen

OxFFFE
0x0001
0x0001
0x0001

"Heavy Sword" is the first item on the list. You can see that it excludes all items except
the first one. All of the other items exclude only the first item, so that carrying the rope
excludes carrying the sword, but not the canteen.

COMMAND-KEY SEQUENCES AND IMAGERY

A command-key sequence is an event generated when the user holds down one of the
AMIGA keys (the ones with the fancy A) and presses one of the normal alphanumeric
keys at the same time. You can associate a command-key sequence with a particular
menu item. Menu command-key sequences are combinations of the right AMIGA key
with any alphanumeric character. If the user presses a command-key sequence that is
associated with one of your menu items, Intuition will send the program an event that
will look like the user went through the entire process of selecting the menu item manu-
ally. This allows you to provide shortcuts to the user, because many people find it easy
to memorize the command-key sequences for often-repeated menu selections. When
accessing those often-repeated selections, most users would rather keep their hands on
the keyboard than go to the mouse to make a menu selection.

You associate a command-key sequence with a menu item by setting the COMMSEQ
flag in the Flags variable of the Menultem structure and by putting the ASCII charac-
ter (upper or lower case) that you want associated with the sequence into the
Command variable of the Menultem structure.

124 Menus



\ 'L
When items have alternate key sequences, the menu boxes show a special AMIGA key
icon rendered about one character span plus a few pixels from the right edge of the
menu select box and the command-key used with the AMIGA key rendered immediately
to the right of the AMIGA key image, at the rightmost edge of the menu select box (see
figure 6-4).

If you want to show a command-key sequence for an item, you should make sure that
you leave blank space at the right edge of your select box and imagery. You should
leave COMMWIDTH amount of blank space on high-resolution screens, and
LOWCOMMWIDTH amount of space on low-resolution screens.

Project UTUaSpecial Color Shape Bnusft

i
Undo BQ: . „
FraHe • v

Cut CJX'
Copy BCErase

Erase Screen

Figure 6-4: Menu Items with Command Key Shortcuts

See chapter 12, "Style Notes," for suggested command key sequences.

ENABLING AND DISABLING MENUS AND MENU ITEMS

Disabling menu items makes them unavailable for selection by the user. Disabled menus
and menu items are displayed in a "ghosted" fashion; that is, the imagery is overlaid
with a faint pattern of dots, making it less distinct. Enabling or disabling a menu or
menu item is always a safe procedure, whether or not the user is currently using the
menus. A problem arises only if the program disables a menu item that the user has
already selected with extended select. The program will receive a MENUPICK message
for that item, even though it thinks it has already disabled it. The program will have to
ignore items that it knows are already disabled.

Menus 125



You use the routines OnMenu() and OfiMenuQ to enable and disable individual
subitems, items or whole menus. These routines check if the user is using the menus
and whether the menus need to be redrawn to reflect the new states.

CHANGING MENU STRIPS

If you want to make changes to the menu strip you previously attached to your window,
you must first call ClearMenuStripQ. You may alter the menu strip only after it has
been removed from the window.

To add a new menu strip to your window, you must call ClearMenuStrip() before you
call SetMenuStripQ with the new menum.

MENU NUMBERS AND MENU SELECTION MESSAGES

An input event is generated every time the user activates the menu system by pressing
the mouse menu button (or entering an appropriate command-key sequence). Your pro-
gram receives a message of type MENUP1CK telling which menu item has been selected.
If one of your items has a subitem list, the menu number your program receives for that
item includes some subitem selection.

Even if the user presses and releases the menu button without selecting any of the menu
items, an event is generated. If the user presses and releases the menu button without
selecting one of the menu items, the program receives a message with the menu number
equal to MENUNULL. In this way, the program can always find out when the user has
simply clicked the menu button rather than making a menu selection.

The user can select multiple menu items with one of the extended selection procedures
(pressing the mouse select button without releasing the menu button or drag-selecting).
Your program finds out whether or not multiple items have been chosen by examining
the field called NextSelect in the Menultem data structure. After taking the
appropriate action for the item selected by the user, the program should check the
NextSelect field. If the number there is equal to the constant MENUNULL, there is no
next selection. However, if it is not equal to MENUNULL, the user has selected another
option after this one. The program should process the next item as well, by checking its
NextSelect field, until It finds a NextSelect equal to MENUNULL.

The following code fragment shows the com -t way to process a menu event:

126 Menus



while (MenuNumber != MENUNULL)
{
Item = ItemAddress(MenuStrip, MenuNumber);
/* process this item */
MenuNumber = Item->NextSelect;

The number given in the MENUPICK message describes the ordinal position of the
Menu in your linked list, the ordinal position of the Menultem beneath that Menu,
and (if applicable) the ordinal position of the subitem beneath that Menultem. Ordinal
means the successive number of the linked items, starting from 0. To discover the
Menus and Menultems that were selected, you should use the following macros:

Use MENUNUM(num) to extract the ordinal menu number from the value.
Use ITEMNUM(num) to extract the ordinal item number from the value.
Use SUBNUM(num) to extract the ordinal subitem number from the value.
MENUNULL is the constant describing "no menu selection made."
Likewise, NOMENU, NOITEM, and NOSUB are the null states of the parts.

For example:

if (number == MENUNULL) then no menu selection was made, else
MenuNumber = MENUNUM(n umber);
ItemNumber = ITEMNUM(n umber);
SubNumber = SUBNUM(number);
if there were no subitems attached to that item, SubNumber will equal NOSUB.

The menu number received by the program describes either MENUNULL or a valid
menu selection. If it is a valid selection, it will always have at least a menu number and
a menu item number. Users can never "select" the menu text itself, but they always
select at least an item within a menu. Therefore, the program always gets one menu
specifier and one menu item specifier. If a given menu item has a subitem, a subitem
specifier will also be received. Just as it is not possible to select a menu, it is not possi-
ble to select a menu item that has a list of subitems. The user must select one of the
options in the subitem list before the program ever hears about it as a valid selection.

If the user enters a command-key sequence, Intuition checks to see if the sequence is
associated with a current menu item. If so, Intuition sends the menu item number to
the program with the active window just as if the user had made the selection using the
mouse buttons.

The function ItemAddressQ translates a menu number into an item address.

Menus 127



HOW MENU NUMBERS REALLY WORK

The following is a description of how menu numbers really work. It should illuminate
why there are certain numeric restrictions on the number of menu components Intuition
allows. You should not use the information given here to access the menu number infor-
mation directly. This discussion is included only for completeness. To assure upward
compatibility, always use the macros supplied. To extract the item number from the
variable MenuNumber, for example, call ITEMNUM(MenuNumber). See the previous
section, "Menu Numbers and Menu Selection Messages," for a complete description of
the menu number macros.

Menu numbers are 16-bit numbers with 5 bits used for the menu number, 6 bits used for
the menu item number, and 5 bits used for the subitem number. Everything is specified
by its ordinal position in a list of same-level pieces, as shown below.

c c c c c b b b b b b a a a a a _

I i i
| | > These bits are for the menu number.

I I
| > These bits are for the menu items within the menu.

i
> These bits are for the subitems within the menu items.

Thus, for each level of menu item and subitem, up to 31 pieces can be specified. There
are 63 item pieces that you can build under each menu, which is a lot, especially with 31
subitems per item. You can have 31 menu choices across the menu bar (it would be a
tight squeeze, but in 80-column mode you could do it), and each of those menus can
exercise up to 1,953 items. You should not need any more choices than that.

The value "all bits on" means that no selection of this particular component was made.
MENUNULL actually equals "no selection of any of the components was made" so
MENUNULL always equals "all bits of all components on."

Here's an example. Say that your program gets back the menu number (in hexadecimal)
OxOCAO. In binary that equals:

128 Menus



0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0

I I
I > Menu number 0

I
> Menu item number 0x25 = 37

> Subitem number 1
Again, it is never safe to examine these numbers directly. Use the macros described
above if you want to design sanely and assure upward compatibility.

INTERCEPTING NORMAL MENU OPERATIONS

You have two convenient ways to intercept the normal menu operations that take place
when the user presses the right mouse button. The first, MENUVERIFY, gives your
program the opportunity to react before menu operations take place and, optionally, to
cancel menu operations. The second, RMBTRAP, allows the program to trap right
mouse button events for its own use.

Menu-verify

Menu-verify is one of the Intuition verification functions. These functions allow you to
make sure that your program is prepared for some event before it takes place. Using
menu-verify, Intuition allows all windows in a screen to verify that they are prepared for
menu operations before the operations begin. In general, you would want to use this if
the program is doing something special to the display of a custom screen, and you want
to make sure it is completed before menus are rendered.

Any window can access the menu-verify feature by setting the MENUVERIFY flag in
the NewWindow structure when opening the window. When your program gets a mes-
sage of class MENUVERIFY, menu operations will not proceed until the program replies
to the message.

The active window gets special menu-verify treatment. It is allowed to see the menu-
verify message before any other window and has the option of canceling menu operations
altogether. You could use this, for instance, to examine where the user has positioned
the mouse when the right button was pressed. If the pointer is in the menu bar area,
then you can let normal menu operations proceed. If the pointer is below the menu bar,
then you can use the right button event for some non-menu purpose.

Menus 129



Your program can tell whether or not it is in the active window by examining the code
field of the MENUVERIFY message. If the code field is equal to MENUWAITING, your
window is not the active one and Intuition is simply waiting for you to verify that menu
operations may continue. However, if the code field is equal to MENUHOT, your win-
dow is the active one and it gets to decide whether or not menu operations should
proceed. If the program does not want them to proceed, it should change the code field
of the message to MENUCANCEL before replying to the message. This will cause Intui-
tion to cancel the menu operations.

No Menu Operations — Right Mouse Button Trap

By setting the RMBTRAP flag in the NewWindow structure when you open your win-
dow, you select that you do not want any menu operations at all for your window.
Whenever the user presses the right button while your program's window is active, the
program will receive right button events as normal MOUSEBUTTON events.

REQUESTERS AS MENUS

You may, in some cases, want to use a requester instead of a menu. A requester can
function as a "super-menu" because you can attach a requester to the double-click of the
mouse menu button. This allows users to bring up the requester on demand. With a
requester, however, the user must make some response before resuming input to the win-
dow. See chapter 7, "Requesters and Alerts," for more information.

Using Menus

Follow these steps to design and use menus:

1. Design the menu structures and link them together into a menu strip.

2. Submit the menu strip to Intuition, which attaches the strip to a window.

3. Arrange for your program to respond to Intuition's menu selection messages.

130 Menus



To create the menu structures, you need to choose:

o The menu names that appear in the screen title bar.

o The menu items that appear when the user selects a menu, including:

o Each menu item's position in the list.

o Text or a graphic image for each menu item.

o Highlighting method for this item when the user positions the pointer over
it.

* - o Any equivalent command-key sequence.

o Which items have subitems. For the subitems, you make the same decisions
as for the menu items.

Menu strips are constructed of three components: menus, menu items, and subitems.
They use two data types: Menu and Menultem. Subitems are of the Menultexn data
type. .

Menu b the data type that describes the basic unit of the menu strip. The menu strip b
made up of a linked list of Menus. Each Menu b the header or topic name for a list of
Menultems that can be selected by the user. The user never selects just a Menu, but
rather a Menu and at least one of its Menultems.

The Menu structure contains the following:

o The menu bar text that appears across the screen's title bar when the menu
button is pressed.

o The position for the menu bar text.

o A pointer to the next in the list of Menus.

o A pointer to the first in a linked lbt of Menultems.

Menus 131



The Menultem structure contains the following:

o The location of the item (with respect to the select box of its Menu),

o A pointer to text or a graphics image.

o Highlighting method when the user positions the pointer over this item.

o Any equivalent command sequence.

o The select box for the item (used to detect selection and for some of the
highlighting modes).

o Other «'tems mutually excluded by the selection of this one (if any),

o A pointer to the first in a linked list of subitems (if any).

o The menu number of the next selected item (if any). When more than one item
has been selected, this field provides the link.

The third menu component, the subitem, uses the same data structure as the menu
item. Subitems are identical to menu items except that the subitem's location is relative
to its menu item's select box and the subitem's subitem link is ignored.

MENU STRUCTURES

The specifications for the menu structures are given below. Menus are the headers that
show in the menu bar, and Menultems are the items and subitems that can be chosen
by the user.

Menu Structure

Here is the specification for a Menu structure:

132 Menus



struct Menu

struct Menu *NextMenu;
SHORT LeftEdge, TopEdge, Width, Height;
USHORT Flags;
BYTE *MenuName;
struct Menultem *FirstItem;

i-

The variables in the Menu structure have the following meanings:

NextMenu

This variable points to the next Menu header in the list. The last Menu in the list
should have a NextMenu value of NULL.

LeftEdge, TopEdge, Width, Height

These fields describe the select box of the header. Currently, any values you may
supply for TopEdge and Height are ignored by Intuition, which uses instead the
screen's TopBorder for the TopEdge and the height of the screen's title bar for
the Height. This will change someday when menu headers are allowed to be either
textual or graphical and are allowed to appear anywhere in the menu title bar.
LeftEdge is relative to the LeftEdge of the screen plus the screen's left border
width, so if you say LeftEdge is 0, Intuition puts this header at the leftmost allow-
able position.

Flags

The flag space is shared by your program and Intuition. The flags are:

MENUENABLED
This flag indicates whether or not this Menu is currently enabled. You set this
flag before you submit the menu strip to Intuition. If this flag is not set, the
menu header and all menu items below it will be disabled, and the user will not
be able to select any of the items. After you submit the strip to Intuition, you
can change whether your menu is enabled or disabled by calling OnMenuQ or
OfiMenu().

MIDRAWN
This flag indicates whether or not this Menu's items are currently displayed to
the user.

Menus 133



Menu Name

This is a pointer to a null-term mated character string that is printed on the screen's
title bar starting at the LeftEdge of this Menu's select box and at the TopEdge
just below the screen title bar's top border.

Firstltem

This points to the first item in the linked list of this Menu's items (Menultem
structures).

Menultem Structure

Here is the specification for a Menultem structure (used both for items and subitems):

struct Menultem

struct Menultem *NextItem;
SHORT LeftEdge, TopEdge, Width, Height;
USHORT Flags;
LONG MutualExclude
APTR ItemFill;
BYTE Command;
struct Menultem *SubItem;
USHORT NextSelect;

The fields have the following meanings:

Nextltem

This field is a pointer to the next item in the list. The last item in the list should
have a Nextltem value of NULL.

LeftEdge, TopEdge, Width, Height

These fields describe the select box of the Menultem. The LeftEdge is relative to
the LeftEdge of the Menu. The TopEdge is relative to the topmost position
Intuition allows. TopEdge is based on the way the user has the system configured
— which font, which resolution, and so on. Use 0 for the topmost position.

134 Menus



t

Jr

Flags

The flag space is shared by your program and Intuition. See "Menultem Flags"
below for a description of the flag bits.

MutualExclude

This LONG word refers to the items that may be on the same "plane" as this one
(maximum of 32 items). You use these bits to describe which if any of the other
items are mutually excluded by this one. This does not mean that you cannot have
more than 32 items in any given plane, just that only the first 32 can be mutually
excluded.

ItemFill

This points to the data used in rendering this Menultem. It can point to either an
instance of an IntuiText structure with text for this Menultem or an instance of
an Image structure with image data. Your program tells Intuition what sort of
data is pointed to by this variable by either setting or clearing the Me mltem flag
bit ITEMTEXT. See "Menultem Flags" below for more information about
ITEMTEXT.

SelectFill

If you select the Menultem highlighting mode HIGHIMAGE (in the Flags vari-
able), Intuition substitutes this alternate image for the original rendering described
by ItemFill. SelectFill can point to either an Image or an IntuiText, and the
flag ITEMTEXT describes which.

Command

This variable is storage for a single alphanumeric character. If the Flag
COMMSEQ is set, the user can hold down the right AMIGA key on the keyboard
(to mimic using the right mouse menu button) and press the key for this character
as a shortcut for using the mouse to select this item. If the user does this, Intuition
transmits the menu number for this item to your program. It will look to your pro-
gram exactly as if the user had selected a menu item using menus and the pointer.

Subltem

If this item lias a subitem list, this variable should point to the first subitern in the
list. Note that if this item is a subitem, this variable is ignored.

NextSelect

This field is filled in by Intuition when this item is selected by the user. If this item
is selected by the user, your program should process the request and then check the
NextSelect field. If the NextSelect field is equal to MENUNULL, no other items

Menus 135



were selected; otherwise, there is another item to process. See "Menu Numbers and
Menu Selection Messages" above for more information about user selections.

Menultem Flags

Here are the flags that you can set in the Flags field of the Menultem structure:

CHECKIT
You set this flag to inform Intuition that this item is an attribute item and you
want a checkmark to precede this item if the flag CHECKED is set. See the section
"Action/Attribute Items and the CheckMark" above for full details.

CHECKED
Set the CHECKIT flag above if you want this item to be checked when the user
selects it. When you first submit the menu strip to Intuition, set this bit to specify
whether or not this item is currently a selected one. Thereafter, Intuition maintains
this bit based on effects from the item list's mutual exclusions.

ITEMTEXT
You set this flag if the representation of this item (pointed to by the ItemFill field
and possibly by SelectFill) is text and points to an IntuiText; you clear it if the
item is graphic and points to an Image.

COMMSEQ
If this flag is set, this item has an equivalent command-key sequence (see the
Command field above).

ITEMENABLED
This flag describes whether or not this item is currently enabled. If an item is not
enabled, its image will be ghosted and the user will not be able to select it. Set this
flag before you submit the menu strip to Intuition. Once you have submitted your
menu strip to Intuition, you enable or disable items only by using OnMenu() or
OfFMenuQ. If this item has subitems, all of the subitems are disabled when you
disable this item.

HIGHFLAGS
An item can be highlighted when the user positions the pointer over the item.
These bits describe what type of highlighting you want, if any. You must set one of
the following bits according to the type of highlighting you want:

HIGHCOMP
This complements*1'all of the bits contained by this item's select box.

136 Menus



HIGHBOX
This draws a box outside this item's select box.

HIGHIMAGE
This displays the alternate imagery in SelectFill (textual or image).

HIGHNONE
This specifies no highlighting.

The following two flags are used by Intuition:

ISDRAWN
Intuition sets this flag when this item's subitems are currently displayed to the user
and clears it when they are not.

HIGHITEM
Intuition sets this flag when this item is highlighted and clears it when the item is
not highlighted.

MENU FUNCTIONS

There are menu functions for attaching and clearing menu strips, for enabling and disa-
bling menus or menu items, and for finding a menu number.

Attaching and Removing a Menu Strip

The following functions attempt to attach a menu strip to a window or clear a menu
strip from a window:

SetMenuStrip(Window, Menu)

Menu is a pointer to the first menu in the menu strip. This procedure
sets the menu strip into the window.

ClearMenuStrip(Window)

This procedure clears any menu strip from the window.

J

Menus 137



Enabling and Disabling Menus and Items

You can use the following functions to enable and disable items after a menu strip has
been attached to the window. If the item component referenced by MenuNumber
equals NOITEM, the entire menu will be disabled or enabled. If the item component
equates to an actual component number, then that item will be disabled or enabled.

You can enable or disable whole menus, just the menu items, or just single subitems.

o To enable or disable a whole menu, set the item component of the menu number
to NOITEM. This will disable all items and any subitems.

o To enable or disable a single item and all subitems attached to that item, set
the item component of the menu number to your item's ordinal number. If your
item has a subitem list, set the subitem component of the menu number to
NOSUB. If your item has no subitem list, the subitem component of the menu
number is ignored.

o To enable or disable a single subitem, set the item and subitem components
appropriately.

OnMenu(Window, MenuNumber)

This function enables the given menu or menu item.

OfiMenu(Window, MenuNumber)

This function disables the given menu or menu item.

Getting an Item Address

This function finds the address of a menu item when given the item number:

ItemAddress(MenuStrip, MenuNumber)

MenuStrip is a pointer to the first menu in the menu strip.

138 Menus



Chapter 7

REQUESTERS AND ALERTS

Requesters are menu-iike information exchange boxes that can be displayed in windows
by the system or by application programs. You can also have requesters that the user
can bring up on demand. They are called requesters because the user has to "satisfy the
request" before continuing input through the window. Alerts are similar to requesters
but are reserved for emergency messages.

J

Requesters and Alerts 139



About Requesters

Requesters (see figure 7-1) are like menus in that both menus and requesters offer options
to the user. Requesters, however, go beyond menus. They become "super menus"
because you can place them anywhere in the window, design them to look however you
want, and bring them up in the window whenever your program needs to elicit a
response from the user—and they come replete with any kind of gadgets you care to
use. The most fundamental differences between requesters and menus are that reques-
ters require a response from the user and that while the requester is in the window, the
window locks out all user input. The requirement of a user response is virtually the only
restriction placed on your program's use of requesters.

m

KI m
GI m
HI m

copy
RANGE
OK

CANCEL

••:iif

Figure 7-1: Requester Deluxe

Requester Display

Requesters can be brought up in a window in three different ways.

o System requesters are invoked by the operating system; your program has no
control over these. For example, someone using a text editor might try to save
a file to disk when^ there is no disk in the drive. The system requester comes up
and makes sure the user understands the situation by demanding a response
from the user. ,

140 Requesters and Alerts



o You can bring up the regular application requesters whenever your program
needs input from the user.

o You can attach a requester to a double-click of the mouse menu button. Users
can bring up this "double-menu request" whenever they need the particular
option supplied by the requester.

Once a requester is brought up in an window, all further input to the program from that
window is blocked. This is true even if the user has brought up the requester. The
requester remains in the window and input remains blocked until the user satisfies the
request by choosing one of the requester gadgets. You decide which of your gadgets
meets this criterion. While the requester is in the window, the only input the program
receives from that window is made up of broadcasts when the user selects a requester
gadget. Even though the window containing the requester is locked for input, the user
can work in another application or even in a different window of your application and
respond to the requester later.

A window with an unsatisfied requester is not blocked for program output. Nothing
prevents your program from writing to the window. You must use caution, however,
since the requester obscures part of the display memory of the window. Fortunately,
there are several ways to monitor the comings and goings of requesters, which your pro-
gram can use to ensure that it can safely bring up an application requester. (See
UIDCMP Features" below.)

In displaying any kind of requester (except the super-simple yes-or-no kind created with
AutoRequest()), you can specify the location in two ways. You can select either a con-
stant location that is an offset from the top left corner of the window or a location rela-
tive to the current location of the pointer. Displaying the requester relative to the
pointer can get the user's attention immediately and closely associates the requester with
whatever the user was doing just before the requester came up in the window.

You can nest several application requesters in the same window, and the system may
present requesters of its own that become nested with the application requesters. These
are all satisfied in reverse sequence; the last requester to be displayed must be satisfied
first.

Application Requesters

In adding requesters to your program, you have several options. You can supply a
minimum of information and let Intuition do the work of rendering the requester or you
can design a completely custom requester, drawing the background, borders, and gadgets
yourself and submitting the requester to Intuition for display.

Requesters and Alerts 141



Ml You can select a requester rendered by Intuition in two ways. If the requester is com-
plex and you want to attach gadgets and have some custom features, you initialize a
requester for general usage. In the requester structure, you supply the gadget list, bord-
ers, text, and size of the rectangle that encloses the requester. Intuition will allocate the
buffers, construct a bit-map that lasts for the duration of the display, and render the
requester in the window on demand from your program or the user. Alternatively, if the
requester requires only a simple yes or no answer from the user, you can use the special
AutoRequestQ function that builds the requester, displays it, and waits for the user's
response.

On the other hand, you can design your own custom requester with your own hand-
drawn image for the background, gadgets, borders, and text. You get your own bit-map
with a custom requester, so you can design the imagery pixel by pixel if you wish, using
any of the Amiga art creation tools. When you have completed the design, you submit
it to Intuition for display as usual. Consistency and style are the only restrictions
imposed on designing your own requester. The gadgets should look like gadgets and the
gadget list should correspond to your images (particularly the gadget select boxes, to
avoid confusing the user).

You should always provide a safe way for the user to back out of a requester without
taking any action that affects the user's work. This is very important -

A user's action or response to a requester can be as simple as telling the requester to go
away. Because the user's action consists of choosing a requester gadget, there must be
one or more gadgets that terminate the requester.

Another Option

As an option to bringing up a requester, you can flash your screen in a complementary
color (binary complement, that is—see the "Images, Line Drawing, and Text" chapter
for an explanation). This is handy if you want to notify the user of an event that is not
serious enough to warrant a requester and to which the user does not really need to
respond. For instance, the user might be trying to choose an unavailable function from
a menu or trying to use an incorrect command-key sequence. If the event is a little more
berious, you can flash all the screens simultaneously. See the description of
DisplayBeepQ in chapter 11, "Other Features."

142 Requesters and Alerts



# • • : •

RENDERING REQUESTERS

There are two ways of having complex requesters rendered—you can supply Intuition
with enough information to do the rendering for you, or you can supply your own com-
pletely customized bit-map image. You fill in the Requester structure differently
according to which rendering method you have chosen.

If you want Intuition to render the requester for you, you need to supply regular gadg-
ets, a "pen" color for filling the requester background, and one or more text structures
and border structures.

For custom bit-map requesters, you draw the gadgets yourself, so you supply a valid list
of gadgets, but the text and image information in the gadget structures can be set to
NULL, because it will be ignored. Other gadget information—select-box dimensions,
highlighting, and gadget type—is still relevant. The select-box information is especially
important since the select box must have a well-defined correspondence with the gadget
imagery that you supply. The basic idea here is to make sure that the user understands
your requester imagery and gadgetry. The fields that define borders, text, and pen color
are ignored and can be set to NULL.

REQUESTER DISPLAY POSITION

You can have Intuition display the requester in a position relative to the position of the
pointer or as an offset from the upper left corner of the window.

NOTE: The current release of Intuition does not support the POINTREL feature.

To display the requester relative to the current pointer position, set the POINTREL flag
and initialize the RelLeft and RelTop variables, which describe the offset of the upper
left corner of the requester from the pointer position. The values in these variables can
be negative or positive. Note that the values you supply are only advisory. If the
pointer is in a location that would cause the requester to be rendered outside the win-
dow, it will be rendered as close as possible to the desired location but still within the
window frame. The actual top and left position are stored in the TopEdge and
LeftEdge variables.

To display the requester as an offset from the upper left corner of the window, initialize
the TopEdge and LeftEdge variables. These should be positive values.

Requesters and Alerts 143



DOUBLE-MENU REQUESTERS

A double-menu requester is exactly like other requesters with one exception: it is
displayed only when the user double-clicks the mouse menu button. You give the user
the ability to bring up a double-menu requester by calling SetDMRequestQ. After the
user brings up one of these requesters, window input is blocked as if your program or
Intuition had brought up the requester. A message stating that a requester has been
brought up in your window is entered into the input stream. If you want to stop the
user from bringing up a double-menu requester (for instance, if you want to modify it or
simply throw it away), you can unlink it from the window by calling
ClearDMRequestQ.

GADGETS IN REQUESTERS

Each requester gadget should have the REQGADGET flag set in its GadgetType
variable.

Each requester must have at least one gadget that satisfies the request and allows input
to begin again. For each gadget that ends the interaction and removes the requester,
you set the ENDGADGET flag in the gadget Activation field. Every time one of the
requester gadgets is selected, Intuition examines the ENDGADGET flag; if the flag is set,
the requester is erased from the screen and unlinked from the window's active-requester
list.

Algorithmic (Intuition-rendered) and custom bit-map requesters differ in how their gadg-
ets are rendered. In algorithmic requesters, you supply regular gadgets just like the
application gadgets in windows or screens. In custom bit-map requesters, the gadgets
are part of the bit-map that you supply for display. Even in custom bit-map requesters,
however, you must supply a list of gadgets, because you must still define the select box,
highlighting, and gadget type for each gadget even though the gadget image information
is ignored.

EDCMP REQUESTER FEATURES

If you are using the IDCMP for input, the following IDCMP flags add refinements to the
use of requesters:

REQVERIFY
With this flag set, you can make sure that your program is ready to allow a
requester to appear in the window. When the program receives a REQVERIFY
message, the requester will not be rendered until the program replies to the
message.

144 Requesters and Alerts



DOUBLE-MENU REQUESTERS

A double-menu requester is exactly like other requesters with one exception: it is
displayed only when the user double-clicks the mouse menu button. You give the user
the ability to bring up a double-menu requester by calling SetDMRequestQ. After the
user brings up one of these requesters, window input is blocked as if your program or
Intuition had brought up the requester. A message stating that a requester has been
brought up in your window is entered into the input stream. If you want to stop the
user from bringing up a double-menu requester (for instance, if you want to modify it or
simply throw it away), you can unlink it from the window by calling
ClearDMRequestQ.

GADGETS IN REQUESTERS - - - ~

Each requester gadget should have the REQGADGET flag set in its GadgetType
variable.

Each requester must have at least one gadget that satisfies the request and allows input
to begin again. For each gadget that ends the interaction and removes the requester,
you set the ENDGADGET flag in the gadget Activation field. Every time one of the
requester gadgets is selected, Intuition examines the ENDGADGET flag; if the flag is set,
the requester is erased from the screen and unlinked from the window's active-requester
list.

Algorithmic (Intuition-rendered) and custom bit-map requesters differ in how their gadg-
ets are rendered. In algorithmic requesters, you supply regular gadgets just like the
application gadgets in windows or screens. In custom bit-map requesters, the gadgets
are part of the bit-map that you supply for display. Even in custom bit-map requesters,
however, you must supply a list of gadgets, because you must still define the select box,
highlighting, and gadget type for each gadget even though the gadget image information
is ignored.

IDCMP REQUESTER FEATURES

If you are using the IDCMP for input, the following IDCMP flags add refinements to the
use of requesters:

REQVERIFY
With this flag set, you can make sure that your program is ready to allow a
requester to appear in the window. When the program receives a REQVERIFY
message, the requester will not be rendered until the program replies to the
message.

144 Requesters and Alerts



REQSET
With this flag set, your program will receive a message when the first requester
opens in your window.

REQCLEAR
With this flag set, your program will receive a message when the last requester is
cleared from the window.

You set these flags when you call ModifyIDCMP() or create a NewWindow struc-
ture. See chapter 8, "Input and Output Methods," for further information about these
IDCMP flags.

A SIMPLE, AUTOMATIC REQUESTER

For a simple requester that prompts the user for a positive or negative response, you can
use the AutoRequestQ function (see figure 7-2). You supply some explanatory text for
the body of the requester, negative and positive text to prompt the user's response, the
width and height of the requester, and some optional flags for the IDCMP. The positive
text is the text you want associated with the user's choice of "Yes," "True," "Retry,"
and similar responses. Likewise, the negative text is associated with the user's choice of
"No," "False," "Cancel," and so on. The positive text is automatically rendered in a
gadget in the lower left of the requester, and the negative text is rendered in a gadget in
the lower right of the requester. The positive text pointer can be set to NULL, specify-
ing that there is no positive choice for the user to make. The IDCMP flags allow either
positive or negative external events to satisfy the request. For instance, the positive
external event of the user putting a disk in the drive could satisfy the request.

When you call the function, Intuition will build the requester, display it, and wait for a
response from the user. If possible, the requester is displayed in the window supplied as
an argument to the routine. If not, Intuition opens a window to display the requester.

Requesters and Alerts 145



©Iflpsion
| No disk present
I, in uni t 1

! (Retry [Cancelj
1— — •. C7

i Cdir)
libs (dip)
prt (dip)

aval!
debug
imp
highsafe
pastoral.pic
safe
si«ple2

[>S™pPdm

colorp
Disk^info
frags

prefs
sinpls
Sifiple3

Ei

Figure 7-2: A Simple Requester Made with AutoRequestQ

The AutoRequestQ function calls BuildSysRequestQ to construct the simple reques-
ter. Your program can call BuildSysRequestQ directly if you want the program to use
the simple requester and to monitor the requester itself. All gadgets created by
BuildSysRequestQ have the following gadget flags set:

BOOLGADGET
It is a Boolean TRUE or FALSE gadget.

RELVERIFY
The program receives a broadcast if this gadget is activated.

REQGADGET
This flag specifies that this is a requester gadget.

TOGGLESELECT
This flag specifies that this is a toggle-select type of gadget.

146 Requesters and Alerts



Using Requesters

To create and use a requester, follow these steps:

1. Declare or allocate a Requester structure.

2. Fill out the Requester with your specifications for gadgets, text, borders, and
imagery.

3. If you are using the IDCMP for input, decide whether to use the special func-
tions provided.

4. Display the requester by calling either RequestQ or SetDMRequestQ.

REQUESTER STRUCTURE

To create a requester structure, follow these steps:

1. Fill in the values you need in the structure.

2. Set up a gadget list.

3. Supply a BitMap structure if this is a custom requester.

The specification for a Requester structure follows.

struct Requester

struct Requester *OlderRequest;
SHORT LeftEdge, TopEdge;
SHORT Width, Height;
SHORT RelLeft, RelTop;
struct Gadget *ReqGadget;
struct Border *ReqBorder;
struct IntuiText *ReqText;
USHORT Flags; '"*.
UBYTE BackFill;
struct Layer *ReqLayer;
UBYTEReqPadl[32]
struct BitMap *ImageBMap; - - - - « • •
struct Window *RWindow; , , . " - . ? * , "*- • ^
UBYTE ReqPad2[36]

\ . - - - y ' ' _

Requesters and Alerts 147



Here are the meanings of the fields in the Requester structure:

NOTE: See "Intuition Rendering" and "Custom Bit-Map Rendering" below for
information about how the initialization of the structure differs according to how the
requester is rendered.

OlderRequest
This is a link maintained by Intuition, which points to requesters that were ren-
dered before this one.

LeftEdge, TopEdge
Initialize these if the requester is to appear relative to the upper left corner of
the window (as contrasted to the POINTREL method, where the requester is
rendered relative to the pointer). _ _

Width, Height
These fields describe the size of the entire requester rectangle, containing all the

""' text and gadgets.

RelLeft, RelTop
Initialize these if the requester is to appear relative to the current position of the
pointer. Also, set the POINTREL flag.

Req Gadget
This field is a pointer to the first in a linked list of gadget structures.

There must be at least one gadget with the ENDGADGET flag set to terminate
the requester.

ReqBorder
This field is a pointer to an optional Border structure for the drawing lines
around and within your requester.

ReqText
This field is a pointer to an IntuiText structure containing text for the
requester.

Flags
You can set these flags:

POINTREL
Set this flag to specify that you want the requester to appear relative to the
pointer (rather than offset from the upper left corner of your window).

148 Requesters and Alerts



PREDRAWN "J

Set this flag if you are supplying a custom BitMap structure for the
requester and ImageBMap points to the structure.

Intuition uses these flags:

REQOFFWINDOW
Set by Intuition if the requester is currently active but is positioned off-
window.

REQACTIVE
This flag is set or cleared by Intuition based on whether or not this
requester is currently being used.

SYSREQUEST
This flag is set by Intuition if this is a system-generated requester.

BackFill
Pen number for filling the requester rectangle before anything is drawn into the
rectangle.

ReqLayer
This contains the address of the Layer structure used in rendering the
requester.

ImageBMap
This flag is a pointer to the custom bit-map for this requester. If you are not
supplying a custom bit-map for this requester, Intuition ignores this variable.

If you are supplying a custom bit-map, the PREDRAWN flag must be set.

RWindow
This is a system variable. """_

ReqPadl, ReqPad2
These are reserved for system use.

The following sections describe the differences in the Requester structure between
requesters rendered by Intuition and custom-bit-map requesters.

Requesters and Alerts 149



Requesters Rendered by Intuition

The following notes apply to requesters rendered by Intuition.

o ReqGadget is a pointer to the first in a list of regular gadgets to be rendered in
the requester box. Take care not to specify gadgets that extend beyond the
requester rectangle that you describe in the Width and Height fields, for Intui-
tion does no boundary checking.

o ReqBorder is a pointer to a Border structure for your requester. The lines
specified in this structure can go anywhere in the requester; they are not
confined to the perimeter of the requester.

o ReqText is a pointer to an IntuiText structure. This is for general text in the
requester.

o BackFill is the pen number to be used to fill the rectangle of your requester
before any drawing takes place.

For example, the following Requester structure allows Intuition to do the rendering,

struct Requester MyRequest =

NULL,
20, 20, 200, 100,
0,0,
&BoolGadget,
NULL,
&MyText
NULL,
2,
NULL,
{NULL},
{NULL},
NULL,
{NULL},

/* OlderRequester maintained by Intuition */
/* LeftEdge, TopEdge, Width, Height */
/* RelLeft, RelTop */
/• First gadget */
/* ReqBorder */
/* ReqText */
/* Flags */
/* BackFill */
/* ReqLayer */
/* pad */
/* BitMap */
/* RWindow */
/ • pad */

150 Requesters and Alerts



Custom Bit-Map Rendering

These notes apply to custom bit-map requesters.

o ReqGadget points to a valid list of gadgets, which are real gadgets in every
way except that the gadget text and imagery information are ignored (and can
be NULL). The select box, highlighting, and gadget type data is still pertinent.
You must make sure there is a well-defined correspondence between the gadgets'
select boxes and the requester imagery that you supply.

o The ReqBorder, ReqText, and BackFill variables are ignored and can be set
to NULL.

o The ImageBMap pointer points to your own BitMap of imagery for this
requester.

o You should set the flag PREDRAWN. ~ "

THE VERY EASY REQUESTER

Here are the arguments you supply to AutoRequestQ for the automatic, simple
Boolean requester that Intuition will build for you:

Window
This is a pointer to the window in which the requester is to appear.

BodyText
This is a pointer to an IntuiText structure that explains the purpose of the
requester.

PositiveText
This is a pointer to the IntuiText structure containing the positive response
text.

This field can be NULL if there is no positive response.

Negative Text
This is a pointer to the IntuiText structure containing the negative response
text.

PositiveFIags
These are flags for the IDCMP for positive external events that will satisfy the
request.-- •.. "~i~z~

Requesters and Alerts 151



NegativeFlags
These are flags for the IDCMP for negative external events that will satisfy the
request.

Width, Height
These specify the size of the rectangle enclosing the requester.

REQUESTER FUNCTIONS

A brief rundown of the requester functions follows.

Submitting a Requester for Display

The following function submits regular requesters to Intuition for display:

Request(Requester, Window)

This function displays a requester in the specified window.

Double-menu Requesters

The following functions affect double-menu requesters:

SetDMRequest(Window, Requester)

This function attaches a requester to the double click of the mouse menu
button.

ClearDMRequest(Window, Requester)

This function unlinks the requester from the window and stops the user
from bringing it up.

Removing a Requester from the Display

EndRequest(Requester, Window)

This futfction erases a requester invoked by the user or application and
resets the window. It removes only the one requester named.

152 Requesters and Alerts



The Easy Yes-or-No Requester

The following function automatically builds, displays, and gets a negative or positive
response from a requester:

AutoRequest (Window, BodyText, PositiveText, NegativeText
PositiveFlags, NegativeFlags, Width, Height)
This function builds a requester from the arguments supplied, displays
the requester, and returns TRUE or FALSE.

Requesters and Alerts 153



Alerts

Alerts are for emergency messages. There are two types: system alerts and application
alerts.

System and application alerts display absolutely essential messages and should be
reserved for critical communications in situations that require the user to take some
immediate action; for instance, when the application has experienced a fatal error or the
system has or is about to crash. System alerts are managed entirely by Intuition. (See
figure 7-3 for an example of an alert.)

ALERT: Systea Out of HoiopyError
Press Left Button to Retry Press Right Button to Abort

Guru Meditation Nuwber 6x8768880

Copyright CO 1985 CoHHflriore-AHisfa, Inc.
All rights reserved.
Version 23,12
CLI Version 23.3
Use date to set date & tine
Date DD-MMH-VY HHlW
Friday I9-Jul-85 18:67:49
1) run z
ICLI 21
1) I

Figure 7-3: The "Out of Memory" Alert

The sudden display of an alert is a jarring experience for the user, and the system stops
and holds its breath while the alert is displayed. For these reasons, you should use
alerts only when there is no other recourse. If you can, use requesters with warning mes-
sages instead.

The alert display has a black background and red border, a 640-pixel resolution, and can
be as tall as needed to display your text. The alert appears at the top of the video
display. If the rest of the display is still healthy, it is pushed down low enough to show
the alert. If this is a fatal alert and the system is going down, the alert takes over the
entire display.

154 Requesters and Alerts



There are two types of alerts: RECOVERY.ALERT, and DEADEND_ALERT.

o RECOVERY_ALERT displays your text and flashes the alert's border outline
while waiting for the user to respond. This alert is optimistic and presumes that
the system can continue operations after the alert is satisfied. It returns TRUE
if the user presses the left mouse button in response to your message. Otherwise
it returns FALSE.

o DEADEND_ALERT prints your text and returns FALSE immediately.

The Boolean function DisplayAlert() creates and displays an alert message. Your mes-
sage will most likely get out to the screen regardless of the current state of the machine
(with the exception of catastrophic hardware failures). If the user presses one of the
mouse buttons, the display returns to its original state, if possible. Display Alert () also
displays the Amiga system alert messages. DisplayAlert() needs three arguments: an
AlertNumber, a pointer to a string, and a number describing the required display
height.

o AlertNumber is a LONG value. Here you set bits specifying whether this is a
RECOVERY_ALERT or a DEADENDJVLERT.

o The String argument points to an AlertMessage string that is made up of one
or more substrings. Each substring contains the following:

o The first component is a 16-bit x coordinate and an 8-bit y coordinate
describing where on the alert display you want the string to appear. The y
coordinate describes the location of the text baseline.

o The second component is the text itself. The string must be null-terminated
(it ends with a zero byte).

o The last component is the continuation byte. If this byte is zero, this is the
last substring in the message. If this byte is non-zero, there is another sub-
string in this alert message.

o The last argument, Height, tells Intuition how many display lines are required
for your alert display.

Requesters and Alerts 155



i- Chapter 8

INPUT AND OUTPUT METHODS

An Overview of Input and Output

From the Intuition point of view, information flows through the system in the following
steps (see figure 8-1):

Input and Output 157



o Information originates from somewhere in the user's cranial area.

o From there, it flows through biological output devices such as fingers and into
electro-meohanical input devices such as keyboards, mice, graphics tablets, and light
pens. These input devices create input signals that enter the Amiga through several
different ports.

o Inside, these input signals are merged into a coherent stream of input events.

o This input stream is examined and manipulated by several entities, including Intui-
tion. Intuition gazes deeply into the essence of every event it sees. Sometimes it
consumes events, other times it adds to the stream, and often it sits lazily by,
watching the stream flow through its fourth dimension.

o Finally, application programs receive the input stream and take action based on the
data contained therein. The result of the action often involves creating output,
which is presented to the user via a video monitor.

o The user's eye input devices detect the information being displayed on the video
output device. The eyes, and some still-mysterious merge mechanism, translate the
data into signals that are transmitted to the brain, thus completing the cycle.

% Figure 8-1: Watching the Stream

158 Input and Output



About Input and Output

The Amiga has an input device to monitor all input activity, which nominally includes
keyboard and mouse activity, but which can be extended to include many different types
of input signals. Whenever the user moves the mouse, presses one of the mouse buttons,
or types on the keyboard, the input device detects it and constructs an InputEvent (a
message describing what just occurred). Other devices and programs can ask the input
device to construct an input message using their own data (for instance, AmigaDOS is
able to generate an input event whenever a disk is inserted or removed, and an
application-installed music-keyboard device can add note events to the stream). All of
these events are merged into the input stream. The input device then broadcasts this
input event stream through special message ports so that any interested party can moni-
tor the events, intercept some of the events, and even add new ones to the stream.
Intuition is one of the interested parties.

Some of the events, such as "mouse-button pressed," may have great meaning to Intui-
tion. If they do, Intuition consumes them, which is to say that Intuition extracts those
events from the input stream. Other events, such as the "disk inserted" event, may be
of interest to more than one user of Intuition, so Intuition translates these into a
separate message for each application. Still other events, such as most of the keyboard
events, mean nothing to Intuition, and Intuition merely passes them along.

A typical application decides what to do from moment to moment by responding to the
events in the input stream. Although many applications may be waiting for input simul-
taneously, only the application that Intuition regards as active for input will receive
these input stream events. Usually, as described in chapter 4, "Windows," the user
selects which application is active for input by using the Intuition pointer to select that
application's window. If your program is the active one, you get to see the input stream
events after Intuition has examined them. Your program receives the input stream
either directly from Intuition or via another mechanism known as the console device. If
the program has no use for the messages either, then the next consumer gets a chance to
examine the stream, and so on.

Intuition provides two paths for your program to receive messages from the input
stream. One is immediate and involves no preprocessing of the data. The other can
supply you with standard terminal input functions, buffers, and data representations.
The paths are explained below:

o Intuition's Direct Communications Message Ports system (IDCMP) makes stan-
dard Amiga Exec message communications easily available for you and gives you
input data in its most raw (untranslated) form. This also supplies the only
mechanism you have for communicating to Intuition.

Input and Output 159



o The console device gives you "cooked'* input data, including key-code conver-
sions to ASCII and conversions to ANSI escape sequences (Intuition-generated
events, such as CLOSE WINDOW, will be translated into escape sequences).

When you want your program to present visual information to the user via your window
or screen, you can choose from three methods. The one you choose depends on your
particular needs. These three methods are:

o Creating imagery by sending your output directly to the graphics, text, and ani-
mation primitives of the Amiga ROM kernel. You can use these for rendering
functions like line drawing, area fill, specialized animation, and output of unfor-
matted text. This is the most elementary method.

o Using the Intuition-supplied support functions for rendering text, graphical
imagery, and line drawing. These provide many of the same functions as the
deeper ROM routines, but these routines do the clerical work of saving, initializ-
ing, and restoring states. Also, the image functions provide a new method of
object-oriented rendering.

o Outputting text via the console device, which formats text with special text
primitives such as ClearEndOfLineQ and text functions such as automatic
line-wrapping and scrolling. For string output, if you want to do anything more
than the simplest text rendering, you should use the console device. This gives
you nicely formatted text with little fuss.

Note that the console device is mentioned both as a source for input and as a mechanism
for output. It is convenient to do both input and output via the console device only. In
particular, text-only programs can open the console and do all their I/O there without
ever learning anything about windows, bit-maps, or message ports. Use of the console
device for most text-only applications is encouraged, since it requires less work on your
part and simplifies the I/O logic of your programs.

On the other hand, opening a console device consumes a fair amount of RAM (currently
about 1.5K). If you do not need the console device or are willing to forego its features, it
may be better for you to open the IDCMP for input and do your graphics rendering
directly through the Intuition and graphics primitives. Under some conditions (for
instance, when you have a complex program doing lots of different things), you might
want to open both the console device and the IDCMP for input. There is no rule for
deciding which mechanism you should use. After you read this chapter, you'll be able to
decide for yourself.

The following description of how I/O flow works with (and around) your program is
actually a super-simplifie^ model of how system-wide I/O really works, but it is a true
representation of I/O at the microcosmic level of your program.

160 Input and Output



In the illustrations that follow, the input device is found at the top of the diagram. In
this device mouse, keyboard, and other input events are merged into a single stream of
input events, which is then submitted to Intuition for further processing.

U.JU
uu

K

1
Other — • —

Input Device

i i

Application
Program

Graphics, Text
and Animation

IDCMP

Intuition

_ — ,

I

o
0

Figure 8-2: Input from the IDCMP, Output through the Graphics Primitives

Figure 8-2 shows an example of a program after it has opened the IDCMP. This will be
the typical configuration for games or other applications that are willing to process input
data themselves. The IDCMP allows you to configure the events that are important to
you. Your program can, for instance, learn about gadget events and get notification
that it should stop writing to its window (the IDCMP flags SIZEVERIFY and
REQVERIFY), but the program may not want to learn about other mouse or keyboard
events. If you set up the program to learn about raw keyboard events through the
IDCMP, note that the key codes received come straight from the keyboard to the pro-
gram. These keycodes are as raw as they get, although the IDCMP also provides the
special Qualifier field to assist your translations. Alternatively, you can receive key-
board events translated into ASCII (or some other standard). Messages sent via the
IDCMP are instances of the structure IntuiMessage. When you open the IDCMP, you

Input and Output 161



must monitor the message port supplied by Intuition.

Figure 8-3 illustrates the flow of information when the only the console is opened. This
will be the typical configuration for text-only applications and applications that want
the simplest I/O possible. Refer to the Amiga ROM Kernel Manual for details on open-
ing a console device and performing I/O through it.

DO
Other

Input Device

Console Device

Application
Program

Graphics, Text
and Animation

Intuition

Figure 8-3: Input and Output through the Console Device

j }• Figure 8-4 shows a complex program that needs the features of both the console device
and the IDCMP. An example might be a program that needs ASCII input and format-
ted output and the IDCMP verification functions (for example, to verify that it has
finished writing to the window before the user can bring up a requester).

162 Input and Output



DD
Other

Console Device

Application
Program

Graphics, Text
and Animation

Input Device

j I D C M P ,

Intuition

1

1

o
o

Figure 8-4: Full-system Input and Output (a Busy Program)

Figure 8-5 shows an application that has opened a window with neither a console nor an
IDCMP. This window gets no input, and the application can write to the window only
via the graphics primitives. You might want to do this if your program has opened
other windows that do I/O and you want special graphics-only windows (for instance, to
monitor RAM usage or watch the clock) that you will close later. If the user selects a
window that has no console or IDCMP, further input is discarded until a different win-
dow is selected.

Input and Output 163



•
DO

Application
Program

V

Graphics, Text
and Animation 1

I

0
o

i

Figure 8-5: Output Only

Using the IDCMP

The IDCMP ports allow your application and Intuition to talk directly to each other.
You can use the IDCMP to learn about mouse, keyboard, and Intuition events without
going through the console device. Intuition also uses the IDCMP, for example, to control
the menu display or manage gadget lists. Also, certain useful Intuition features, most
notably the verification functions (described under "IDCMP Flags" below), require that
the IDCMP be opened, as this is the only mechanism available for communicating to
Intuition.

n

i i

164 Input and Output



The IDCMP consists of a pair of message ports, which are allocated and initialized by
Intuition on your request: one port for you and one port for Intuition. These are stan-
dard Exec message ports, used to allow interprocess communications in the Amiga multi-
tasking environment. To open these ports automatically, you set IDCMP flags in the
NewWindow structure. To open or close them later, you call Modify ID CMP (),
which allocates or deallocates message ports or changes which events will be broadcast to
your program through the IDCMP. Once the IDCMP is opened, you can receive many
different flavors of information directly from Intuition, based on which flags you have
set. As with much of Intuition, all of the "grunt work" with message ports is done for
you, leaving you free to concentrate on more global issues.

If you have a message port that you have already created, you can have Intuition use
that port to communicate with you. This is described below.

CAUTION: If you attempt to close the IDCMP, either by calling ModifylDCMFQ or
by closing the window, without first having Reply()'d to all of the messages sent out by
Intuition, Intuition will reclaim and deallocate those messages without waiting for a
Reply() from y°u- W v o u attempt to ReplyQ after the close, you will get to watch the
Amiga FIREWORKSJDISPLAY mode.

To learn more about message ports and message passing, please refer to the Amiga ROM
Kernel Manual.

INTUIMESSAGES

The IntuiMessage data type is an Exec Message that has been extended to include
Intuition-specific information. The ExecMessage field in the IntuiMessage is used by
Exec to manage the transmission of the message. The Intuition extensions of the
IntuiMessage are used to transmit all sorts of information to your program. Here is
what the IntuiMessage looks like:

struct IntuiMessage

struct Message ExecMessage;
ULONG Class;
USHORTCode;
USHORT Qualifier;
APTR IAddress;
SHORT MouseX, MouseY;
ULONG Seconds, Micros; ,
struct Window *IDCMPWindow; £ -Z-
struct IntuiMessage *SpecialLink;

Input and Output 165



IntuiMessages contain the following components:

ExecMessage
The data in this field is maintained by Exec. It is used for linking the message
into the system and broadcasting it to a message port.

Class
This is a ULONG variable whose bits correspond directly with the IDCMP flags.

Code
This is a USHORT variable whose bits contain special values, such as menu
numbers or special code values, set by Intuition. The meaning of this field is
directly tied to the Class (above) of this message. Often, there is no special
meaning for the code field, and it is merely a copy of the code of the
InputEvent initially sent to Intuition by the input device. When this message
is of class RAWKEY, this field has the raw key code generated by the keyboard
device. When this message is of class VANILLAKEY, this field has the
translated character.

Qualifier
This contains a copy of the ie_Qualifier field that is transmitted to Intuition
by the input device. This field is useful if your program handles raw key codes,
since the Qualifier tells the program, for instance, whether or not the SHIFT
key or CTRL key is currently pressed.

MouseX and MouseY
Every IntuiMessage you receive will have the mouse coordinates in these vari-
ables. The coordinates are relative to the upper left corner of your window.

Seconds and Micros
These ULONG values are copies of the current system clock time in seconds and
microseconds. Microseconds range from zero up to one million minus one. The
32 bits allocated to the Seconds variable means that the Amiga clock can run
for 139 years before wrapping around to zero again.

lAd dress
This has the address of some Intuition object, such as a gadget or a screen,
when the message concerns, for example, a gadget selection or screen operation.

ID CMP Window
This contains the address of the window to which this message pertains.

166 Input and Output



SpecialLink
This is for system use only.

IDCMP FLAGS

f.
i

You specify the information you want Intuition to send you via the IDCMP by setting
the IDCMP flags. You can set them either in the NewWindow structure when opening
a window or when calling ModifyIDCMP() to change the IDCMP specifications. The
following is a specification of the IDCMP functions and flags.

Mouse flags:

MOUSEBUTTONS
This flag causes reports about mouse-button up and down events to be sent to
you, if these transitions do not mean something to Intuition. When your pro-
gram receives a MOUSEBUTTONS class of event, it can examine the Code field
to discover which button was pressed or released. The Code field will be equal
to SELECTDOWN, SELECTUP, MENUDOWN, or MENUUP.

NOTE: If the user clicks the mouse button over a gadget, Intuition deals with
it and your program does not hear about it. Also, the only way your program
can learn about menu button events in this way is by setting the RMBTRAP
flag in the window. See chapter 4, "Windows," for more information.

MOUSEMOVE
Reports about mouse movements are sent in the form of x and y coordinates.
This can mean a lot of messages, so your program should reply to them swiftly.
See the section called "An Example of the IDCMP," below.

NOTE: This works only if the REPORTMOUSE flag is set in the
NewWindow structure or if some gadget is selected with the FOLLOWMOUSE
flag set.

DELTAMOVE
When this flag is set, mouse movements are reported as deltas (amount of
change from the last position) rather than as absolute positions. This flag works
in conjunction with the MOUSEMOVE flag. Note that delta mouse movements
are reported even after the Intuition pointer has reached the limits of the
display.

Input and Output 167



i

Gadget flags:

GADGETDOWN
Your program will receive a message of this class, when the user selects a
gadget that was created with the GADGIMMEDIATE flag set.

GADGETUP
When the user releases a gadget that was created with the flag REL VERIFY set,
your program will receive a message of this class.

CLOSEWINDOW
If the user has selected your window's close gadget, the message telling the pro-
gram about it will be of this class.

Menu flags:

MENUPICK
This flag indicates that the user has pressed the menu button. If a menu item
was selected, the menu number of the menu item can be found in the Code field
of the IntuiMessage. If no item was selected, the Code field will be equal to
MENUNULL.

MENUVERIFY
This is a special verification mode which, like the others, allows your program to
verify that it has finished drawing to your window before Intuition allows the
users to start menu operations. This is a special kind of verification, however, in
that any window in the entire screen that has this flag set will have to respond
so that menu operations may proceed. Also, the active window of the screen is
allowed to cancel the menu operation. This is unique to MENUVERIFY. Please
refer to chapter 6, "Menus," for a complete description.

See the "Verification Functions" section below for some things to consider when
using this flag.

168 Input and Output



Requester flags:

REQSET .
~l Set this flag to receive a message when the first requester opens m a window. -

REQCLEAR .
Set this flag to receive a message when the last requester is cleared from the
window.

- ' REQVERIFY ' •
Set this flag if you want your application to make sure that other rendering to
its window has ceased before a requester is rendered in the wmdow. This
includes requiring the system to get your approval before opening a system
requester in your window. With this flag set, Intuition sends the application a
message that a requester is pending, and then WaitQs for the application to
Reply() before drawing the requester in the window.

:
 If several requesters open in the window, Intuition asks the application to verify

M. - only the first one. After that, Intuition assumes that all output b being held off
a until all the requesters are gone. You can set the REQCLEAR fiag to find out
?£--=—• w hen all requesters are removed from the window. Once the application receives

a message of the type REQCLEAR, it is safe to write to the window until
another REQVERIFY is received. You can also check the INREQUEST flag of
the window, although this is not as safe a method because of the asynchronous

nature of any multitasking environment.

* gee the "Verification Functions" section below for some things to consider when

w using this flag.

'Xz, Window flags:

I N E W S I Z E " ' • ; ;
: Intuition sends your program a message after the user has resized the window.

After receiving this, the program can examine the size variables in the window
structure to discover the new size of the window.

REFRESHWINDOW
A message is sent to the application whenever your window needs refreshing.

: This flag makes sense only with windows for which the SIMPLEL.REFRESH or
SMARTJtEFRESH type of refresh has been selected.

SIZEVERIFY , _ . . , .
You set this flag if your program is drawing to the window in such a way that
the drawing must be finished before the user sizes the window. If the user tries

T to s i z e the window, a message is sent to the application and Intuition will
& Wait() until the program replies.

Input and Output 169



4
l

See the "Verification Functions" section below for some things to consider when
using this flag.

ACTIVEWINDOW and INACTIVEWINDOW
Set these flags to discover when your window becomes activated or inactivated.

Other flags:

VANILLAKEY
This is the raw keycode RAWKEY event translated into the current default
character keymap of the console device. In the USA, the default keymap is
ASCII characters. When you set this flag, you will get IntuiMessages with the
Code field containing a character representing the key struck on the keyboard.

RAWKEY
Keycodes from the keyboard are sent in the Code field. They are raw keycodes,
so you may want the program to process them.

The Qualifier field contains the information generated by the input device
about this key.

NEWPREFS
When the user changes the system Preferences by using the Preferences tool, or
when some other routine causes the system Preferences to change, you can make
sure your program finds out about it by setting this flag.

When your program gets a message of class NEWPREFS, it can call the pro-
cedure GetPrefs() to get the new Preferences.

NOTE: Everyone who sets this flag will learn about these events, not just the
active window.

DISKINSERTED and DISKREMOVED
When the user inserts or ejects any disk with any drive, the program will be
told about the event if either or both of these flags are set.

NOTE: Everyone who sets these flags will learn about these events, not just
the active window.

INTUITICKS
This gives you simple timer events from Intuition when your window is the
active one; it may help you avoid opening and managing the timer device. With
this flag set, you will get only one queued-up INTUITICKS message at a time.
If Intuition notices that you've been sent an INTUITICKS message and haven't
replied to it, another message will not be sent.

Intuition receives timer events ten times a second (approximately).

170 Input and Output



Verification Functions

SIZEVERIFY, REQVERIFY, and MENUVERIFY are exceptional in that Intuition sends
an IntuiMessage and then waits, by calling the Exec message port function WaitQ, for
the application to reply that it is all right to proceed. The application replies by calling
the Exec message passing function ReplyMsg().

The implication is that the user requested some operation but the operation will not
happen immediately and, in fact, will not happen at all until your application says it is
safe. Because this delay can be frustrating and intimidating, you should strive to make
the delay as short as possible. Your program should always reply to a verification mes-
sage as immediately as possible.

You can overcome these problems by setting up a separate task to monitor the IDCMP
and respond to incoming IntuiMessages immediately. This is recommended whenever
you are planning heavy traffic through the IDCMP, which occurs when you have set
many IDCMP flags. - _.

SETTING UP YOUR OWN IDCMP MONITOR TASK AND USER PORT

To set up your own IDCMP monitor task, you supply your own port. The addresses of
the IDCMP message ports can be found in two variables, UserPort (your application's
input port) and WindowPort (Intuition's input port).

In the simplest case, Intuition allocates (and deallocates) both of these ports when you
define a window with IDCMP flags or call ModifyIDCMP(). If the WindowPort is
not already opened when one of these functions is called, it will be allocated and initial-
ized. The UserPort is checked separately to see whether it b already opened. Intuition
will send messages to your program via the UserPort and will receive replies via the
WindowPort. The port variables point to a valid message port if they are opened and
are NULL if not opened.

When Intuition initializes the UserPort for you, Intuition calls AllocSignalQ to get a
signal bit. Since your task called OpenWindowQ, this allocation of a signal is valid for
your task. The address of your task is saved into the SigTask variable of the message
port.

You can choose to supply your own port. You might do this in an environment in which
your program is going to open several windows and you want the program to monitor
input from all of the windows using only one message port. To supply your own port,
do the following:

Input and Output 171



1. Define the window with the variable IDCMPFlags set to NULL, which means
no ports will be opened.

2. Set the UserPort variable of the window to any valid port of your own
choosing.

3. Call ModifylDCMPQ with the flags set as you wish. When Intuition sees that
the UserPort variable is non-null, it will assume that the variable points to a
valid message port. When Intuition sees that the WindowPort variable is still
NULL, a message port will be created.

4. Later, before calling CloseWindowQ, set UserPort equal to NULL. Intuition
will delete the WindowPort and will detect that the UserPort is not there to
be deleted.

An Example of the IDCMP

This section shows a short example of working with the IDCMP. You can receive and
respond to events using a loop like this:

172 Input and Output



I '-*

i r-

FOREVER
{
/* Wait until some message arrives at the port */
Wait(l << MyWindow->UserPort->mp_SigBit);

/* Now, one or more messages have arrived. Respond to all of them.
* First, set up to accumulate mouse moves (rather than responding
* to each one as it comes in)

• /
MouseMoved = FALSE;

while (message = GetMsg(MyWindow->UserPort))
{
/* First, gather some relevant information and then reply right away! */
class = message-> Class;
code = message-> Code;
address = message->IAddress;
x = message->MouseX;
y = message->MouseY;
Reply Msg(message);

if (class = MOUSEMOVE) MouseMoved = TRUE;
else (ProcessMessage(class, code, address, x, y));

/* If the mouse moved during the loop, respond to it now */
if (MouseMoved) ProcessMove(x, y);

Using the Console Device

The following discussion is a brief description of how you open and use the console dev-
ice. For full details, refer to the Amiga ROM Kernel Manual and the AmigaDOS Tech-
nical Reference Manual.

There are two ways to open the console device. You can use the one that gives you the
power and flexibility you want and suits the environment in which you are working.
You can either open the console device as a normal AmigaDOS file or open it directly via
a call to OpenDeviceQ. There are advantages and disadvantages to both approaches.

Inpu and Output 173



•i F H

o Opening the console as an AmigaDOS file.

Doing console input and output via AmigaDOS file-handling is simple and con-
venient. Also, you get special line-edit capabilities when opening an AmigaDOS
console.

Opening a console as an AmigaDOS file has, however, two limitations. File I/O
requires more processing overhead than going straight to the console device.
Also, your program must be in an AmigaDOS environment (AmigaDOS must be
active), which will not be the case for those of you who want your applications
to take over the machine.

o Opening the console device directly.

When you open the console device directly, you have direct control over the
parameters and use of the console input and output. Opening the console device
directly is more involved than opening a file; you have to open the device and
then send packets of information using a special data structure. Also, you do
not have the special line-edit capabilities.

USING THE AMIGADOS CONSOLE

Two sorts of input can be obtained with an AmigaDOS console: unprocessed input
through a "RAW:" file type or processed input either through the DOS's window or
through a window of your own choosing.

Getting input from the AmigaDOS console merely involves opening a file with the DOS
command OpenQ, and reading from that file with the DOS command Read(). These
files are simple character-oriented files (also known as byte-stream files). The characters
are read into a buffer of your choosing.

To write characters to a window via the AmigaDOS console, you should use the
AmigaDOS command WriteQ. When you have finished with console I/O, you should
call CloseQ to close the file.

USING THE CONSOLE DEVICE DIRECTLY

To use the console device directly, you create an IOStdReq data structure, in which
you initialize only one field—the io_Data field. You initialize this field with a pointer
to your window. Then you call OpenDeviceQ, which opens the console device and
attaches it to your window. The call to OpenDeviceQ also initializes your IOStdReq
structure for subsequent^calls to console device routines. You can then get input from
the console and send text output to the console using the functions sketched out below.

174 Input and Output



•

Reading from the Console Device

When you want to read from or write to the console device, you use the same
IOStdReq data structure information that was created by the call to OpenDevice(),
with the following extra initializations:

o Set the ioJData field to point to your buffer. A buffer is a block of memory
that will be used to receive the characters from the console device.

o Set the ioJLength field of the IOStdReq equal to the number of bytes in your
buffer. The console device will not write more bytes than this into the buffer.

o Set the io_Command field to the constant CMD_READ.

After you initialize the IOStdReq structure with your buffer information, you call
either the SendlOQ or DoIOQ function to read in any characters that are waiting to
be read. The difference between SendlOQ and DoIOQ is that SendlOQ is asynchro-
nous, which means that while the console device monitors the keyboard, the program
does other processing and checks later to see whether or not the user has typed some-
thing. DoIOQ, on the other hand, is synchronous, which means that when DoIOQ is
called control does not return to the program until the user has typed something.

After the call to one of the input routines, your program can examine the io_Actual
field to discover how many characters were actually written into your buffer.

4
1

i i

Writing Text to Your Window via the Console Device

You can write characters to your window or do special formatting by writing control
escape sequences to the console device. Control escape sequences are special sequences
of characters that start with the "escape" character, which is a character with the byte
value of 155 (that is 0x9B in hex). This character is also known as the control sequence
introducer, or CSI.

When you want to write to the console device, you use the same IOStdReq data struc-
ture information that was created by the call to OpenDeviceQ, with the following extra
initializations:

o Put the characters (and control escape sequences) you want written to your win-
dow into a buffer and put the address of the buffer into the io_Data field of the
IOStdReq structure.

Input and Output 175



o Initialize the field io_Length with the number of characters that are found in
the io_Data buffer. Alternatively, if your text is null-terminated, you can
specify a length of -1 and let the console device figure out the length for you.

o Set the io_Command field to CMD_WRITE.

Text is written entirely within the non-border area of a window (it does not matter what
sort of refresh mode the window has). When writing text with the console device, you
never have to worry about the text being written over the gadget imagery in the borders
of the window.

Character-wrap is supported at edge-of-window boundaries. Character-wrap is a special
feature of all of the console devices that allows the devices to behave like virtual termi-
nals. When this feature is present, if a character to be written will not fit in the remain-
ing space of the current line, the console device will write the character in the first posi-
tion of the next line instead. Compare this with writing text directly into a window
using the text primitives: if your character string reaches the boundary of the window,
it will be written out in the invisible space beyond the window.

The control escape sequences can be used for special text operations, such as LINE
FEED, CLEARJEND_OF_LINE, and cursor movements. The complete list of control
functions available from the console device is quite long; refer to the Amiga ROM Kernel
Manual.

SETTING THE KEYMAP

The keymap is the translation table that the console device uses when translating the
raw keycodes that come from the keyboard device into normal characters (usually
ASCII) for your program to use. If you never bother with the keymap of your virtual
terminal, your program will get plain ASCII translations of the characters typed at the
keyboard. These are equivalent to the characters that are printed on the keys of the
Amiga keyboard.

The keymap also describes higher-level functions such as which keys repeat, which keys
combine with the control keys to result in special control-key sequences, and more. The
default console device keymap configures these functions to look like a generic terminal.

You can supply your own keymapping translation tables if you like. For example, if you
are supporting something like a Dvorak keyboard, you can map the input signals to your
own choice of alphanumerics.

176 Input and Output



You can see the current keymap table by using the CDAskKeyMap() routine, which
returns a copy of the table. You can set your own keymap by calling the
CDSetKeyMap() routine with your own table.

\
-A.

Input and Output 177



Chapter 9

IMAGES, LINE DRAWING, AND TEXT

Intuition provides two approaches to producing graphics images, lines, and text in
displays. For quick and easy rendering, you can use Intuition's high-level data struc-
tures and functions. You are also free to use all of the lower-level Amiga graphics, ani-
mation, and text primitives.

j

This chapter shows you how to use the Intuition structures and functions, but the
Amiga primitives are a large topic in themselves and the discussion here can only point
the way. Ypu will find instructions for using the primitives in the Amiga ROM Kernel
Manual.

Images, Line Drawing, Text 179



Using Intuition Graphics

Images, Borders, and IntuiText are the general-purpose Intuition structures for
rendering graphics and text into your display. They are called illustration data types.

o Images are graphic objects of any size and complexity.

o Borders are connected lines of any length and number, drawn at any angle,
and defining any arbitrary shape.

o IntuiText strings can be written in the default font or in a custom font of your
design.

The illustration data types are easy to design and economical to use. They are easy to
design because their definitions are brief and flexible. Even though each structure
defines a different data type, the data types share a consistency of features and capabili-
ties, so once you have learned one you have pretty much learned them all. This
decreases the amount of energy spent in learning new things, and you can reuse the
same structures in many places. It also reduces the number of Intuition-internal rou-
tines, so we all win.

Each of these illustration data types is located with respect to a display element, or con-
taining element, which can be any of the primary Intuition components: a window,
screen, menu, gadget, or requester. The starting location of an image, border, or text
string is defined as an offset relative to some particular pixel, usually the top left corner
of the element. Any of the illustration data types can be rendered in any of the display
elements. In fact, you can display the same structure in more than one of the elements
at the same time.

There are t\j/o methods of rendering images, borders, and text into display elements:

o In niienus, gadgets, and requesters, you use a pointer field provided in the menu,
gadget, or requester structure. Then, as Intuition handles those structures, the
illustrations are drawn for you.

o In windows or screens, you draw the illustration types directly into the display
elemjent by using one of the functions DrawImageQ, DrawBorderQ, or
Pri4tIText().

In the definitions of all three of these general-purpose structures, you supply a top left
location that] is a relative oflset from the top left of the display element that will contam
the illustration. These relative offsets allow you to use the underlying data arrays across
limitless instances of Image, Border, or IntuiText structures. For example, if you

180 Images, jne Drawing, Text



have numerous gadgets of the same size, you can use the same Border coordinate pairs
to draw a line around each gadget.

i

An important! fact about the illustration elements is that each can point to another of its
own kind. Ypu can link many of them together and have them all drawn with just one
procedure call,

DISPLAYING BORDERS, INTUITEXT, AND IMAGES

Requester, gadget, and menu structures contain a field for rendering borders, text, and
images. This |field contains a pointer to an instance of a Border, IntuiText, or Image
structure. Fojr drawing the illustration types directly into screens and windows, how-
ever, you îse the Intuition functions DrawBorderQ, Drawlmage(), and
PrintlTextQj. You supply a Border, Image, or IntuiText structure as an argument
to the functioi.

Note that thej offsets you specify as arguments to these functbns are added to the offsets
in the graphics structures. Sometimes this extra level of offset can come in handy, espe-
cially when positioning as a group a linked list of illustration structures.

For drawing into screens and windows, you also need a pointer into the window or
screen RastP^rt. See the "Using the Graphics Primitives" section below.

CREATING BORDERS

Although this! data structure is called a Border, it is actually a general-purpose struc-
ture for drawing connected lines at any angles and rendering any arbitrary shape made
up of groups of connected lines. It is called a border because that is how it started out.

To define a Border, you specify the following:

o A set|of x and y offsets to the beginning point of the line.

o A set of coordinate pairs for each vertex.

Images, Line Drawing, Text 181



Two colors and a drawing mode:

o A color for the lines.

A color that can be used for background areas enclosed within lines,

o One of several drawing modes.

o An optional pointer to another instance of Border.

Border Coordinates

Intuition draws lines between points that you specify as as sets of x,y coordinates. The
Border ^variables LeftEdge and TopEdge contain offsets to the first pair of coordi-
nates. Tjhe XY field contains a pointer to an array of coordinate pairs. All of these
coordinates are offsets from the top left corner of the element that contains the line.
Thus, you can define one line and use it in different display elements or use it many
times in ihe same element. The first coordinate pair describes the starting point of the
first line, j Every coordinate pair after the first describes the ending point of the current
line and, if there is another coordinate pair, the starting point of the next line.

Here is aiJL example. Consider a gadget whose select box is 140 pixels wide and 80 pixels
high. Thje top left corner of the gadget's select box is located in a window at position
(10,5). If the border's (LeftEdge, TopEdge) coordinates are (10,10), this results in an
absolute fcjase position of (10+10,5+10), or (20,15), as shown in figure 9-1.

The (LeftEdge, TopEdge) coordinate pair defines the absolute base pixel for this
border. A|l coordinate pairs of the border are relative to this point. If the first set of
coordinates in the array of coordinates is (0,5), the starting point of the first line will be
at (20+0,15+5), or (20,20). If the next coordinate pair is (15,5), the end point of the first
line will l|e at (20+15,15+5), or (35,20). A line will be drawn from absolute position
(20,20) to absolute position (35,20), If there is one last coordinate pair, (15,0), the next
point is ajt (20+15,15+0), or (35,15). A second line segment is drawn from (35,20) to
(35,15).

182 Imaged, Line Drawing, Text



o

5 -

10 —

15 -

20 —

25 -

30 —

5 10 15 20 25 30 35 40 45 50

, I • I • I , I • I
-Top left corner of the gadget's select box (10,5)

Absolute base position
(20,15)

zFirst Coordinate
(20+0,15+5)

Third Coordinate (20+15,15+0)

Second Coordinate (20+15,15+5)

Example of
Border Relative Position

For a border
For example,
box.

Figure 9-1: Example of Border Relative Position

that is outside the select box of a gadget, you can specify negative offsets,
starting position (-1,-1) for a gadget border is just outside the gadget select

Border Colors and Drawing Modes

Intuition uses the current set of colors in the color register to draw the border and,
optionally, tcj> draw its background. As usual, the available colors depend upon the
number of bit-planes used in the screen. For instance, if the screen has five bit-planes,
then you canj select from the colors in color registers 0 through 31. The lines are always
drawn in the color in the FrontPen field.

Two drawing modes pertain to border lines: JAMl, and XOR. To draw the line in your
choice of colc|r, use JAMl. You can choose to have the line "invert" the color of the pix-
els over whic|h it is drawn by selecting the XOR drawing mode. If you use XOR mode,
for every ptojel the line is drawn over, the data bits of the pixel are changed to their
binary complement. The complement is formed by reversing all the 0 bits and 1 bits in
the binary representation of the color register number. In a three-bit-plane display, for
example, colĉ r 6 is 110 in binary. If a pixel is color 6, it will be changed to the comple-
ment of 001 (binary), which is color 1.

Images, Line Drawing, Text 183



Linking;Borders Together

The Ne)ctBorder field can point to another instance of a Border structure. This
allows ydu to link borders together to describe complex line-drawn shapes. Having mul-
tiple borders allows you to draw multiple, distinct groups of lines, each with its own set
of line segments and its own color and draw mode. For example, you may want a dou-
ble border to make a requester stand out more from the surrounding display. You can
define the inner border in a second Border structure and link it to the first structure by
using this field.

Border Structure Definition

Here is th specification for a Border structure:

strluct Border

SHORT LeftEdge, TopEdge;
SHORT FrontPen, BackPen, DrawMode;
SHORT Count;
SHORT *XY;
struct Border *NextBorder

The meanjngs of the fields in the Border structure are:

LeftEdge, TopEdge

This field gives the starting origin for the border as an offset from the top left of
the containing element. LeftEdge is the x coordinate and TopEdge is the y
coordinate for the top left bit of the image. This field can contain integers or
constants.

LeftEdge
This field contains the number of pixels from the left edge of the containing
element.

TopEdge
This field specifies the number of lines from the top line of the containing
element.

184 Images*, Line Drawing, Text



FrontPeji, BackPen, DrawMode

FrontPen is the color used to draw the line. The pen color fields contain
integers or constants that correspond to color registers. BackPen is currently
unused.

You set the DrawMode field to one of the following:

JAM!
This specification uses FrontPen to draw the line and makes no change in
the background.

XOR
This specification changes the background beneath the line to its binary
complement.

i

NextBorjder

This ^eld is a pointer to another instance of a Border structure. Set this field
to NtTLL if there is no other Border structure or if this is the last Border
structure in the linked list.

XY
This feeld is a pointer to an array of coordinate pairs, one pair for each line.

Count

This field specifies the number of pairs in the array of coordinate pairs; the field
contains an integer or constant.

CREATING TEXT

The IntuiText structure provides a simple way of writing text strings anywhere in your
display. For jexample, an array of IntuiText strings is handy in creating menus.

To define an<jl display IntuiText, you specify the following:

o Colons for the text and, optionally, for the text's background.

o One pf three drawing modes.

o The starting location for the text.

Images, ine Drawing, Text 185



o The default font or your own special font.

o A pointer to another instance of IntuiText (if any).

Text Colors and Drawing Modes

As with border colors, Intuition uses the current set of colors in the color register to
write the t£xt and, optionally, to draw its background. As usual, the available colors
depend upqn the number of bit-planes used in the screen. For instance, if the screen has
five bit-places, you can select from the colors in color registers 0 through 31. The text is
usually draVn in the color in the FrontPen field.

Text characters in general are made of two areas: the character image itself and the
background area surrounding the character image.

In addition to the two drawing modes for borders, JAM1 and XOR, you also have
JAM2. Thebe modes are described in the following paragraphs.

If you select) JAMl drawing mode, the text character images, but not the character back-
ground are^is, will be drawn. The character image is drawn in FrontPen color.
Because the! background of a character is not drawn, the pixels of the destination
memory aroUnd the character image are not disturbed. This is called overstrike.

If you selectj JAM2 drawing mode, the character image is drawn in FrontPen and the
character background is drawn in the color in the BackPen field. Using this mode, you
completely cbver any graphics that previously appeared beneath the letters.

If the drawing mode is XOR, the character is drawn in the binary complement of the
colors at its destination. The destination is the display memory where the text is drawn.
FrontPen a|nd BackPen are ignored. To form the complement, you reverse the all the
0 bits and 1| bits in the binary representation of the color register number. In a three-
bit-plane display, for example, color 6 is 110 in binary. The complement is 001 (binary),
which is colo 1.

186 Images, Line Drawing, Text



Linking Tex£ Strings

The NextTe^t field can point to another instance of an IntuiText structure. Using
this field, yoi} can create several distinct groups of characters with one stroke; each
group has its own color, font, location, and drawing mode.

Starting Location

The starting JTopEdge for a text string is the topmost pixels of the tallest characters.
Note that thi^ is different from the baseline of the text. The baseline is the horizontal
line on which) the characters and punctuation marks rest. The system default fonts are
designed to b^ both above and below the baseline. The descenders of letters (the part of
certain letters! that is usually below the writing line, like the tail on the lower-case "y")
are rendered J)elow the base line. Therefore, you need to allow for this in drawing text
in the display). For more information about text imagery, refer to the Amiga ROM Ker-
nel Manual. ! — — — — —

Fonts

You can use the default font, as set by Preferences, or you can have your own custom
font in a Foi^tDesc structure and use the TextAttr field to point to the custom font.
For more information about custom fonts, see the Amiga ROM Kernel Manual.

IntuiText Structure

Here is the specification for an IntuiText structure:

struct IntuiText

UEYTE FrontPen, BackPen;
UBYTE DrawMode;
SHORT LeftEdge;
SÎ ORT TopEdge;
strict TextAttr *ITextFont;
U^YTE *IText;
struct IntuiText *NextText;

Images, Line Drawing, Text 187



The meaniijgs of the fields in the IntuiText structure are as follows.

Frontifen, BackPen

FrontPen is the color used to draw the text. BackPen is the color used to
draw the background for the text, if JAM2 drawing mode is specified.

Thtse fields contain integers or constants that correspond to color register
numbers.

Draw&tode

Thi$ field specifies one of three drawing modes:
i

JAM1
FrontPen is used to draw the text; background color is unchanged.

JAM2
JFrontPen is used to draw the text; background color is changed to the
;olor in BackPen.

XOF
The characters are drawn in the complement of the background.

LeftEdke

This field specifies the starting position for the text as an offset from the left
cornur of the containing element.

The field contains an integer or constant, which is the number of pixels from left
edge of containing element.

TopEdge

This field specifies the starting position for the text as an offset from the top line
of the display element.

The |field contains an integer or constant, which is the number of lines from the
top 1

TextAttr

This

ne of the containing element.

field is a pointer to a TextAttr structure containing your own font
description. Set this to NULL if you want the default font.

IText

This field is a pointer to null-terminated text.

188 Images, IjJne Drawing, Text



NextText

This field is a pointer to another instance of IntuiText, if this text is part of a
linked li|st of text strings.

Set this |field to NULL if this text is not part of a list or if it is the last structure
in the list.

CREATING IMAGES

With an Image structure you can create graphics objects quickly and easily and display
them almost anywhere. Images have an additional attribute that makes them even more
economical—with one minor change in the structure, you can display the same image in
different colors within the same display element.

To define and display an image, you specify the following:

o The location of the image within the display element.

o The wicjth and height of the image and the data to create it.

o The de]j>th of the image that is, how many bit-planes are used to define it.

o The bitj-planes in the display element that are used to display the image. This
determines the colors in the image.

Image Location

You specify a location for the image that places its top left corner as an offset from the
top left corner pf the element that contains the image.

Defining Image Data

To create the data for your image, you write Is and Os into a block of 16-bit memory
words, which are located at sequentially increasing addresses. When the image is
displayed, this! sequential series of memory words is organized into a rectangular area,
called a bit-plane. You can have up to six bit-planes in an image; they are drawn
together when it he image is displayed.

/ • -

Images, Line Drawing, Text 189



The co|or of each pixel in the image is directly related to the value in one or more
memoryj bits, depending upon how many bit-planes there are in the image data and in
which bit-planes of the screen or window you choose to display your image.

The cokbr of a given pixel is determined by one or more data bits. Each bit in the pixel
is taken! from the same position in each of the bit-planes used to define the image. For
each pixjel, the system combines all the bits in the same position to create a binary value
that corresponds to one of the system color registers. This method of determining pixel
color is called color indirection, because the actual color value is not in the display
memory1 Instead, it is in color registers that are located somewhere else in memory.

If an
then:

image consists of only one bit-plane and is displayed in a one-bit-plane display,

Vherever there is a 0 bit in the image data, the color in color register 0 is
displayed.

Wherever there is a 1 bit, the color in color register 1 is displayed.

In an imsj,ge composed of two bit-planes, the color of each pixel is obtained from a binary
number farmed by the values in two bits, one from bit-plane 0 and one from bit-plane 1.
If bit-plane 0 contains all Is and bit-plane 1 contains Os and Is, the pixels derive their
colors from register 1 (binary 01) and register 3 (binary 11).

|
You creatje your image data by giving Intuition a series of data words. Before specifying
these nunjibers, you may find it helpful to lay out your image on graph paper, or to use
one of th0 Amiga art tools to assist you. For example, figure 9-2 shows the layout for
the systenji sizing gadget, which is a one-bit-plane image.

190 Images^ Line Drawing, Text



!

Image Data Hexidecimal Representation

F F F F
C 0 F F
C C F F
C 0 0 3
F C F 3
F C F 3
F C F 3
F C 0 3
F F F F

Figure 9-2: Intuition's High-resolution Sizing Gadget Image

In hex notation, the data words of the sizing gadget image are defined as follows:

USHOjiT SizeDatafl =

OXPJFFF,

OxCJOFF,
OxCJJCFF,
0x<}003,
0xF|CF3,
0xFCF3,
0xltCF3,

Ox^FFF,

In the image data, you need to specify enough whole words to contain the image width.
For example, an image 7 bits wide requires one word per line, whereas an image 17 bits
wide requires two words per line. In the Width field of the Image structure, you
specify the actual width in pixels of the widest part of the image, not how many pixels

Images, Line Drawing, Text 191



contained in the words that define the image. The Height field contains the height of
the imagp in pixels.

I
Here is the actual Image structure of the system-sizing gadget. The last two fields in
the structure, PlanePick and PlaneOnOff, are explained in the next section.

stbuct Image Sizelmage =

{
0, 0, /* left top */
16, 9, 1, /* width, height, depth */
&SizeData[O], /* Address
0x1, 0x0, /* PlanePick, PlaneOnOff */
NULL, /* Nextlmage */

Picking Bit-Planes for Image Display

You use the PlanePick and PlaneOnOff fields in the Image structure to specify which
bit-planes of the containing window or screen are used to display the image. This gives
you great flexibility in using Image structures. You can:

o Drpv an image into a screen or window of any depth (if you have designed it
properly).

o Make one image and display it in different colors.

o Minimize the amount of memory needed to define a simple image that is des-
tinid for a display of multiple bit-planes.

PlanePick "picks" the bit-planes of the containing window or screen Ras tPor t that
will receive the bit-planes of the image. PlaneOnOff specifies what to do with the win-
dow or screen bit-planes that are not picked to receive image data. For each display ele-
ment plane jthat is "picked" to receive data, the next successive plane of image data is
drawn there!. For every bit-plane not picked to receive image data, you tell Intuition to
fill the plane with 0s or Is. For both variables, the binary form of the number you sup-
ply has a direct correspondence to the bit-planes of the window or screen containing the
image. The lowest bit position corresponds to the lowest-numbered bit-plane. For
example, for a window or screen with three bit-planes (consisting of Planes 0, 1, and 2),
all the possible values for PlanePick or Plan eon Off and the planes picked are as
follows.

192 Images, jLine Drawing, Text



PlanePick or
PlaneOnOff

000

001

010

Oil

100

101

110

111

Planes Picked

No planes

Plane 0

Plane 1

Planes 0 and 1

Plane 2

Planes 0 and 2

Planes 1 and 2

Planes 0, 1, and 2

The system sping gadget shown above has only one bit-plane of data. To display this
gadget in plaiie 0 of a four-bitrplane window using color 1 for the image and color 0 for
its background, you set PlanePick to 0001 (binary) and PlaneOnOff to 0000 (binary).
These settings give Intuition the following instructions:

o Disph,y the data that describes the image in plane 0 of the destination
Rastport .

I ..
o For a}l of the other planes in the RastPort, set the bits in the area where the

image! is displayed to 0.

Figure 9-3 illustrates the discussion in the preceding paragraphs.

Images, Line Drawing, Text 193



Bit Map Planes

ED
Pla^e 3

Planepick: 0

Planeonoff: 0

Plane 2
0

0

Plane 1

0

0

Plane 0
1

don't care

Image Data

Figure 9-3: Example of PlanePick and PlaneOnOff

If you want! the sizing gadget to be drawn in color 2 and its background drawn in color
0, you need jto define pixels whose values are 0010 and 0000. To do this, simply change
PlanePick to 0010.

If you want! color 3 for the sizing gadget and color 1 for its background, you need to
define pixels with values 0011 and 0001. Therefore, plane 1 defines the image and plane
0 has to be all Is. You can achieve this by setting PlanePick to 0010 and PlaneOnOff
to 0001.

If you want an image that is simply a filled rectangle, you need not supply any image
data at all. )fou specify a Depth of zero, set Width and Height to any size you like,
and set PlanePick to 0000 since there are no planes of image data to pick. Then, set
PlaneOnOff to the color you want for the rectangle. To see how a gadget like this
looks, refer to the "Requester Deluxe" illustration, figure 7-1, in chapter 7, "Requesters
and Alerts."

194 Images, Line Drawing, Text



Image Structure

i
Here is the specification for an Image structure:

struct Image

SHORT LeftEdge, TopEdge;
feHORT Width, Height, Depth;
SHORT *ImageData;
UBYTE PlanePick, PlaneOnOfT;

Image *NextImage;

The meanings of the fields in the Image structure are:

LeftEdge, TopEdge

These are offsets from the top left of the display element.

These fields contain integers or constants:

LeftEdge
T(iis field contains the number of pixels from the left edge of the display
element.

TopEdge
T$is field contains the number of lines from the top line of the display
element.

Width

This field contains the width of the actual image in pixels.

The fiejld contains an integer or constant.

Height, Depth

These fields specify the height of the image in pixels and the number of bit-
planes needed to define the image.

These fields contain integers or constants.

ImageDat *.

This field is a pointer to the actual bits defining the image.

Images, Line Drawing, Text 195



PlajnePick, PlaneOnOff

PlanePick tells which planes of the containing element you pick to receive
planes of image data. PlaneOnOff tells what to do about the planes that are
not picked.

These fields represent bit-plane numbers.

Image Example

A more complex example of an image is presented below. The image shown in figure 9-4
belongs to one of the system depth-arrangement gadgets (the front gadget, which brings
a window or screen to the front of the display).

|

i
)
*

•
*

;

!

The 3-Cojor Front Gadget Plane 0, Works even in
One-plane Screens

Plane 1, for Highlight

Figure 9-4: Example Image — the Front Gadget

196 Images, Line Drawing, Text



•i

Its data structure and data definition look like this:

"5*

USHORT UpFrontDatafl =
{
0x3FFF, 0xFF3C,
0x3000, 0x3F3C,
0x3000, OxO33C,
0x303F, 0xF33C,
0x303F, 0xF33C,
0x303F, 0xF33C,
0x303F, 0xF33C,
Ox3F3F, 0xF33C,
0x3F00, 0x033C,
0x3FFF, 0xFF3C,
/ * * /
0x0000, 0x0000,
OxOFFF, OxCOOO,
OxOFOO, 0x0000,
OxOFOO, 0x0000,
OxOFOO, 0x0000,
OxOFOO, 0x0000,
OxOFOO, 0x0000,
0x0000, 0x0000,
0x0000, 0x0000,
0x0000, 0x0000,

struct Image UpFImage =
{
0, 0, /* left top */
29, 10, 2, /* width, height, depth */
&UpFrontData[0], /* image data */
0x3, 0x0, /* PlanePick, PlaneOnOff */
NULL, /* Nextlmage */

This gadget was designed to look good in a window or screen of any depth. PlanePick
0x3 (000011) picks planes 0 and 1 of the destination RastPort for planes 0 and 1 of the
gadget. If this gadget is displayed in a window or screen of depth 1, only plane 0 of its
data is displayed. Color 0 is used for the background and color 1 for the imagery.

Images, Line Drawing, Text 197



If this gadget is displayed in a window or screen of depth 2 or more, both planes
displayed. The resulting colors are 0 for the background and 1 and 2 for the imagery

Image Memory

An extra requirement is imposed on image data (and on sprite data). It must be located
in chip memory, which is memory that can be accessed by the special Amiga hardware
chips. Chip memory is in the lower 512 Kbytes of RAM. In expanded machines (the
Amiga can be expanded up to 8,000 Kbytes), the Amiga chips still cannot address
memory locations greater than the 512-Kbyte limit. In hexadecimal notation, 512 K
spans memory addresses $00000 to $7FFFF.

To write a program that will survive in any possible configuration of Amiga hardware,
you are obliged to ensure that your image and sprite data resides in this chip memory.
You can make sure that your data is in chip memory by using the ATOM tool on the
file containing the data. The loader will then automatically load that portion of your
program into chip memory. See the AmigaDOS User*s Manual for information about
ATOM and the loader. ™~

As of the time of this writing, the only way to check whether your data is in chip -
memory is by comparing its load address after it has been loaded into Amiga memory.
If the address of the end of your data is less than $80000, you are safe. If the address is
equal to or greater than $80000, you must allocate chip memory and copy your data into
the new location. To allocate chip memory, call the Exec function AllocMem() with
MEMF_CHIP as the requirements argument.

1 I

198 Images, Line Drawing, Text



[ORGRAPHICS FUNCTIONS

g are brief descriptions of the Intuition functions that re
illustration data types and the Amiga graphics primitives.

ig Images, Lines, or Text in a Window or Screen

Drawlmage (RPort, Image, LeftOffset, TopOffset)

This function moves the Image data into the
L window.

RPort = pointer to the RastPort.
Image = pointer to an Image structure.

h __ LeftOffset = offset added to the Image's x coordinate.
h TopOffset = offset added to the Image's y coordinate.

DrawBorder (RPort, Border, LeftOffset, TopOffset)

This function draws the vectors of the Border into tlxe
RastPort.

z RPort = pointer to the RastPort.
Border — pointer to a Border structure.
LeftOffset = offset added to each vector's x
TopOffset = offset added to each vector's y

PrintlText (RPort, IText, LeftOfiset, TopOffset)

This function prints IntuiText into the window

RPort = pointer to the RastPort to receive the texi& -
IText = pointer to an IntuiText structure.
LeftOffset = offset added to IntuiText x coordinates,
TopOffset = offset added to IntuiText y coordinate^

or

Images, Li^rx Th
Tii.^nS, 199



Obtaining the Width of a Text String

IntuiTextLength (IText)

This function returns the width of an IntuiText in pixels. IText is a
pointer to an instance of an IntuiText structure.

Obtaining the Address of a View or ViewPort

ViewAddressQ

I This function returns the address of the Intuition View structure for any
I graphics, text, or animation primitive that requires a pointer to a View.

ViewPortAddress (window)

This function returns the address of the screen ViewPort associated with
the specified window for any graphics, text, or animation primitive that

I requires a pointer to a ViewPort.

Using the Amiga Graphics Primitives

This section shows how to get pointers into display memory. You need these pointers
for drawing into windows and custom screens with the general-purpose Amiga graphics
routines and for drawing borders, images, and text into windows and screens with the
Intuition routines. This section also has some cautionary advice about using drawing
routines in Intuition displays. Unfortunately, this book does not have the space to pro-
vide a primer for using the graphics routines. To learn how to use them, you will need
to refer to the Amiga ROM Kernel Manual

You can use all of the Amiga graphics routines in your Intuition windows and custom
screens. All of the routines require a pointer to some writable display area—a
RastPort, ViewPort, or View. Intuition creates a RastPort and ViewPort for each
of your windows and custom screens. A RastPort defines some general parameters of a
complete display and provides an area where you can safely write. A ViewPort
specifies some portion of a RastPort .

200 Images, Line Drawing, Text



You can obtain a pointer to any window or screen RastPort or ViewPort by using
instructions like those below: ^

o Pointers to window RastPort and ViewPort: v

struct Window *MyWindow;
struct RastPort *MyRPort;
struct ViewPort *MyVPort;
struct View *BigView;

My Window = OpenWindow(...);
MyRPort = My Window->RPort;
MyVPort = ViewPortAddress(MyWindow);
BigView = ViewAddressQ;

o Pointers to screen RastPort and ViewPort:

struct Screen *My Screen;
struct RastPort *MyRPort;
struct ViewPort *MyVPort;
struct View *BigView;

MyScreen = OpenScreen(...);
MyRPort = &My Screen-> RastPort;
MyVPort = &MyScreen-> ViewPort;
BigView = ViewAddress();

The Intuition function ViewPortAddressQ returns the address of a window's
ViewPort. A View structure is a linked list of one or more ViewPorts. Intuition's
View is a linked list of all the display structures that you use in your Intuition-based
program. The function ViewAddressQ returns the address of the Intuition View
structure.

When you use graphics primitives to draw directly into a window Ras tPor t and you
allow the user to size or move the window, the underlying screen display is destroyed. A
blank background is displayed in the areas uncovered when the screen is sized or moved.
If this is a problem for your program, you can overcome it by opening windows that can-
not be moved or sized.

If a graphics routine requires the allocation and initialization of other graphics
mechanisms—TmpRas structure, Gelslnfo, AreaFill buffers, UserCopperList or the
like—you set these up as usual as described in the Amiga ROM Kernel Manual.

Images, Line Drawing, Text 201



Chapter 10

MOUSE AND KEYBOARD

In the Intuition system, the mouse is the normal method of making selections. This
chapter describes how users employ the mouse to interact with the system and your pro-
grams and how you can arrange for your program to use the mouse in other ways. It
also describes the use of the keyboard as an alternate means of input.

Mouse and Keyboard 203



About the Mouse

A mouse is a small, hand-held input device connected to the Amiga by a flexible cable.
By rolling the mouse around on a smooth surface, the user can input horizontal and
vertical position coordinates to the computer. The mouse also provides a pair of input
keys, called mouse buttons, for the user to input further information to the computer.

Most of the things the user does with the mouse are meaningful to Intuition. Because of
this, Intuition monitors mouse activity closely. As the user moves the mouse, Intuition
follows the motion by changing the position of the Intuition pointer. The Intuition
pointer is an image (using hardware sprite 0) that can move around the entire video
display, mimicking the user's movement of the mouse. The user can use the mouse and
pointer to point at some object and then have some action performed on that object.
Typically, users specify an action by manipulating either or both mouse buttons. Users
can also position the mouse while the buttons are activated.

The basic mouse activities are shown in table 10-1.

Table 10-1: Mouse Activities

Action

Pressing a button

Clicking a button

Double-clicking a button

Dragging

Explanation

Positioning the pointer while holding down
a button. The action specified by the posi-
tion of the pointer can continue to occur
until the button is released, or alternatively
may not occur at all until the button is
released.

Positioning the pointer and quickly pressing
and releasing one of the mouse buttons.

Positioning the pointer and pressing and
releasing a mouse button twice.

Positioning the pointer over some object,
pressing a button, moving the mouse to a
new location, and releasing the button.

The left mouse button is most often used for selection. The right mouse button is most
often used for information transfer. The terms selection and information are intention-
ally left open to some interpretation, as it is impossible to imagine all the uses you will
find for the mouse buttons. The selection/information paradigm can be crafted to cover

204 Mouse and Keyboard



most interaction between the user and your program. You are encouraged, when design-
ing mouse usage, to emphasize this model. It will help the user to understand and
remember the elements of everyone's design.

When the user presses the left button, Intuition examines the state of the system and
the position of the pointer. Intuition uses this information to decide whether or cot the
user is trying to select some object, operation, or option. For example, the user positions
the pointer o < er a gadget and then presses the left button to select that gadget. Alter-
natively, the user may position the pointer over a window and press the select button to
activate the wiadow. If the user moves the mouse while holding down the select button,
this sometimes means that the user wants to select everything that the pointer moves
over while the button is still pressed.

The right mouse button is used to initiate and control information-gathering processes.
Intuition uses this button most often for menu operations. Pressing the right button
usually displays the active window's menu bar over the screen title bar. Moving the
mouse while holding down the right button sometimes means that the user wishes to
browse through all available information; for example, browsing through the menus.
Double-click ing the right mouse button can bring up a special requester for extended
exchange of information. This requester is called the double-menu requester, because of
the double-click of the menu button required to reveal it, and because this requester is
like a super menu through which a complex exchange of information can take place.
Because the requester is used for the transfer of information, it is appropriate that this
mechanism is called up by using the right button.

Your program can receive mouse button and mouse movement events directly. If you
are planning to handle mouse button events yourself, you should continue the
selection/information model used by Intuition.

You can combine mouse button activations and mouse movement to create compound
instructions. Here is an example of how Intuition combines multiple mouse events.
While the right button is pressed to reveal the menu items of the active window, the
user can press the left button several times to select more than one option from the
menus. Also, you can allow the user to move objects or select multiple objects by mov-
ing the mouse while holding down the buttons. As another example, consider the Work-
bench tool. To move an object on the Workbench screen, the user places the pointer
within the object's icon, presses the left button, and moves the pointer. When the icon
is in the desired location, the user releases the button.

Dragging can have different effects, depending on the object being dragged. To move a
window to another area of the screen, the user positions the pointer within the window's
drag gadget and drags the window to a new position. To change the size of a window,
the user positions the pointer within the size gadget and drags the window to some
smaller or larger size. In drag selection, the user can hold down both buttons while in

Mouse and Keyboard 205



menu mode and move the pointer across the menu display, making multiple selections
with one stroke. - : :

Mouse Messages

Mouse events are broadcast to your program via the IDCMP or the console device. See
chapter 9, "Input and Output Methods/' for information on how to receive
communications.

Simple mouse button activity not associated with any Intuition function will be reported
in IntuiMessages as the event class MOUSEBUTTONS, with the codes
SELECTDOWN, SELECTUP, MENUDGWN, and MENUUP to specify changes in the
state of the left and right buttons, respectively. Mouse button activity over your gadg-
ets is reported with a class of GADGETDOWN or GADGETUP, and the IAddress field
(or EventAddress field of InputEvents) has the address of the selected gadget. Menu
selections appear with a class of MENUPICK, with the menu number in the Code field.

Your program receives mouse position changes in the event class MOUSEMOVE. The
MouseX and MouseY position coordinates describe the position of the mouse relative
to the upper left corner of your window. These coordinates are always in the resolution
of the screen you are using, and may represent any pixel position in your screen, even
though the hardware sprites can be positioned only on the even-numbered pixels of a
high-resolution screen and on the even-numbered rows of an interlaced screen.

To get mouse movement reported as deltas (amount of change from the last position)
instead of as absolute positions, you can use the IDCMP flag, DELTAMOVE.

About the Keyboard

The keyboard is used mainly for entering data. However, there are several special ways
to use the keyboard events as alternate methods for the user to enter commands. In
particular, the Amiga keyboard has several special command keys. Each is uniquely
identifiable when pressed along with one of the regular alphanumeric keys. The user can
hold down one of these command keys and type an alphanumeric key at the same time.
This generates a keyboard event that is recognizably different from a normal keystroke.
These special keyboard events are known as command-key sequences. Intuition responds
to certain of the sequences. Your program can respond to them, too. When you receive
a RAWKEY event through the IDCMP, you can tell if the user pressed any of the spe-
cial command keys at the same time by examining the input message's Qualifier field
for the special flags designating the special keys.

206 Mouse and Keyboard



These special command keys (and their flags) are shown in table 10-2.

Table 10-2: Special Command Keys

Key Label - Explanation

control CTRL The associated Qualifier flag is the
CONTROL flag.

alternate ALT Please note that there are two separate
ALT keys, one on each side of the space
bar. These can be treated distinctly. Your
program can detect which one was pressed
by examining the LALT and RALT com-
mands for the Left ALT and Right ALT
keys respectively

escape ESC When this key is struck, its keycode is en-
tered into the input stream as an actual
keystroke.

function Fl to F10 Shortcut methods for entering command-
key sequences starting with the ESC key.

AMIGA Fancy A There are two Amiga keys, one on each side
of the space bar. These, like the ALT keys,
are distinctly identifiable. The Left AMIGA
key is recognized by the Qualifier Sag
LCOMMAND, and the Right AMIGA key
byRCOMMAND.

Certain command-key sequences starting with one of the AMIGA keys have special
meaning to Intuition. Most notably, these involve shortcuts and alternatives to using
the mouse, as described in the following section.

Mouse and Keyboard 207



Using the Keyboard as an Alternate to the Mouse

All Intuition mouse activities can be emulated using the keyboard, by combining the
Amiga command keys with other keystrokes.

The pointer can be moved by pressing down either AMIGA key along with one of the
four cursor keys (the ones with the arrows). The longer these keys are held down, the
faster the mouse will move. Also, you can hold down either SHIFT key to make the
pointer leap greater distances.

To emulate the left mouse button, users can press the left ALT key and the left AMIGA
key simultaneously. To emulate the right mouse button, users can press the right ALT
key and the right AMIGA key simultaneously. These key combinations permit users to
make gadget selections and perform menu operations using the keyboard alone. Thi
will be a boon for mouse-haters.

The following special shortcut functions are supported by Intuition:

o "Bring Workbench to the front" (Left AMIGA and the "N" key).

o "Send Workbench to the back" (Left AMIGA and the "M" key). . .

Note that these functions emulate left mouse button and mouse movement operations.
Also note that Intuition always consumes these two command-key sequences for its own
use. That is, it always detects these events and removes them from the input stream.

You can pair up menu items with command-key sequences to associate certain letters;
with specific menu item selections. This gives the user a shortcut method to select;
often-used menu operations, such as UNDO, CUT, and PASTE. Whenever the
presses the right AMIGA key with some alphanumeric key, the menu strip of the active
window is scanned to see if there are any command-key sequences in the list that match
the sequence entered by the user. If there is a match, Intuition translates the key com-
bination into the appropriate menu item number and transmits the menu number to the
application program. It looks to the application as if the user had selected a given menu
item with the mouse. For more information on menu item selection, see chapter 6,
"Menus."

If Intuition sees a command-key sequence that means nothing to it, the key sequence is
broadcast to your program as usual. See chapter 8, "Input and Output Methods," for
how this works.

208 Mouse and Keyboard



It is recommended that you abide by certain command-key standards to provide a con-
sistent interface for Amiga users. Chapter 12, "Style," contains a complete list of the
recommended standards. - v~~ —

Mouse and Keyboard 209



Chapter 11

OTHER FEATURES

Easy Memory Allocation and Deallocation

Intuition has a pair of routines that make it easy for you to do easy and easily abortable
memory allocations and deallocations. The routines are AllocRemember() and
FreeRememberQ. They use a data type called Remember.

Other Features 211



Figure 11-1: Intuition Remembering

INTUITION HELPS YOU REMEMBER

The AllocRememberQ routine calls the Exec AllocMemQ function to do your
memory allocation for you. It also allocates a link node and uses it to save the parame-
ters of the allocation into a master linked list for you. Then you can simply call
FreeRememberQ at a later time to deallocate all allocated memory, without being
required to remember the details of the memory you've allocated.

The FreeRemember() function gives you the option of freeing memory in one of two
ways: You can free both the memory blocks you've allocated and the link nodes that
Intuition allocates, or, after you have successfully allocated all the memory blocks you
need, you can free up only the link nodes and keep the memory blocks for yourself.

These routines have two primary uses:

o The most general use of these routines is to do all of a program's memory alloca-
tions using AllocRememberQ. The advantage of this is that a linked list of all
your memory allocations is created for you, so that when you want to free up all
the memory, a single call to FreeRememberQ does the job (see figure 11-1).

212 Other Features



The other use is to do a series of memory allocations and abandon it in
midstream easily, if you must. Say that you're doing a long series of allocations
in a procedure (for example, the Intuition OpenWindow() procedure), and you
detect some error condition, such as "out of memory." When aborting, you
should free up any memory that you have already managed to allocate. These
procedures allow you to free up that memory easily, without being required to
keep track of how many ^locations you have already done, the sizes of the allo-
cations, and where the memory was allocated.

HOW TO REMEMBER

You create the "anchor" for the allocation master list by creating a variable that is a
pointer to the data structure Remember and initializing that pointer to NULL. This
variable is called the RememberKey. Whenever you call AllocRemember(), the rou-
tine actually does two memory allocations, one for the memory you want and the other
for a copy of a Remember structure. The Remember structure is filled in with data
describing your memory allocation, and it is linked into the master list to which your
RememberKey points. Then, to free up any memory that has been allocated, all you
have to do is call FreeRemember() with your RememberKey.

See the Amiga ROM Kernel Manual for a description of the AllocMem() call and the
values you should use for the Size and Flags variables.

i

THE REMEMBER STRUCTURE

The Remember structure is as follows:

struct Remember

{
struct Remember *NextRemember;
ULONG RememberSize;
UBYTE *Memory;

The Remember variables are explained below.

NextRememb er
This is the link to the next Remember node.

Other Features 213



RememberSize
This is the size of the memory remembered by this node.

Memory
This is a pointer to the memory remembered by this node.

AN EXAMPLE OF REMEMBERING

struct Remember *RememberKey;
UBYTE *MemAPointer, *MemBPointer;

RememberKey = NULL;
MemAPointer = AllocRemember(&RememberKey, BUFSIZE, MEMF_CHIP);
MemBPointer = AllocRemember(&RememberKey, BUFSIZE, MEMF_CHIP);

/• Use the memory for various things ... */

/* and finally, give up the memory ... */
FreeRemember(&RememberKey, TRUE);

Preferences

Preferences is a program that lets the user see and change many system-wide parameters
on the Amiga. Users can also edit the standard Intuition pointer image and colors. You
have access to the Command Line Interface (CLI) through Preferences, by setting a flag
that allows the CLI icon to be visible on the Workbench display. (See the AmigaDOS
manuals for more information about the CLI.)

The user invokes Preferences to make settings and your program can call GetPrefsQ to
find out what settings the user has made. In a system in which the user does not use
Preferences, you can call GetDefPrefsQ to find out the Intuition default Preference set-
tings. If you are using the IDCMP for input, you can set the IDCMP flag NEWPREFS.
With this flag set, your program will receive an IntuiMessage telling it that there is a
new set of Preferences for it to examine. To get the new settings, the program then calls
GetPrefsQ.

214 Other Features



Developers of printer driver programs should always call GetPrefs() just before
print job. The user may change to a different printer and run Preferences to modi
printer settings.

When Intuition is initialized (when the system is reset), you can call GetDefPrefsQ to
find the default Preferences settings that Intuition uses when it is first opened. Then,
under AmigaDOS, Intuition is configured according to the set of Preferences that are
saved on the start-up disk.

Upon invoking the Preferences tool, the user is shown a screen full of gadgets and can
change settings by selecting and playing with the gadgets. In some cases, a requester
appears after the user selects a gadget. Figure 11-2 shows the main Preferences display.

Preferences

Figure 11-2: Preferences Display

One of the arguments to GetPrefs() and GetDefPrefs() is the size of the buffer you
are supplying to receive the Preferences data. If you are interested only in the first few
bits of data, you do not have to allocate a buffer large enough to hold the entire Prefer-
ences structure. For this reason, the most commonly used data has been grouped near
the beginning of the structure.

Preferences allows the user to change the following:

Other Features 215



o Date and time of day.

o Key repeat speed — the speed at which a key repeats when held down,

o Key repeat delay — the amount of delay before the key begins repeating.

o Mouse speed — how far the pointer moves when the user moves the mouse.

o Double-click delay — maximum time allowed between the two clicks of a mouse
double-click. For information about how to test for double-click timeout, see the
description of the DoubleClick() function in appendix A.

o Text size — size of the default font characters. The user can choose 60-column
mode (60 characters on a line in high-resolution mode and 30 characters in low-
resolution mode) or 80-column mode (80 characters on a line in high-resolution mode
and 40 characters in low-resolution mode). The first variable in the Preferences
structure is FontHeight, which is the height of the characters in display lines. If
this is equal to the constant TOPAZ_JEIGHTY, the user has chosen the 80-column
version. If it is equal to TOPAZ_SIXTY, the user has chosen the 60-column version.
The Preferences display in figure 11-2 shows TOPAZ_SIXTY.

o CLI — allows access to the Command Line Interface for developers.

o Display centering — allows the user to center the image on the video display.

o Baud rate — the user can change the rate of data transmission to accommodate
whatever device is attached to the serial connector.

o Workbench colors — the user can change any of the four colors in the Workbench
display by adjusting the amounts of red, green, and blue in each color. _

o Printer — the user can select from a number of printers supported by Amiga or can
type in another printer name, depending upon which printers are supported by any
application. The user can also indicate whether the printer is connected to the serial
connector or the parallel connector.

o Print characteristics — the user can select paper size, right and left margin, continu-
ous feed or single sheets, draft or letter quality, pitch, and line spacing. If the user
chooses the "Graphic Select" gadget, a requester appears from which the user can
select shade (gray-scale printing), aspect (normal or sideways), positive or reverse
image, and threshold (for black and white printing, determines which colors are
printed as white and which as black).

216 Other Features



The Preferences settings can be written to a Workbench disk, so the user can save the
settings for the next work session. The manual called Introduction to Amiga contains
more information about Preferences from the user's standpoint.

PREFERENCES STRUCTURE

Here is the Preferences data structure:

struct Preferences

{
BYTE FontHeight;
UBYTE PrinterPort;
USHORT BaudRate;
struct timeval KeyRptSpeed, KeyRptDelay;
struct timeval DoubleClick;
USHORT PointerMatrix[POINTERSIZE];
BYTE XOffset, YOffset;
USHORT colorl7, colorl8, colorl9;
USHORT PointerTicks;
USHORT colorO, colorl, color2, color3;
BYTE ViewXOffset, ViewYOffset;
WORD ViewInitX, ViewInitY;
BOOL EnableCLI;
USHORT PrinterType;
UBYTE PrinterFilename[FILENAME_SIZE];
USHORT PrintPitch;
USHORT PrintQuality;
USHORT PrintSpacing;
UWORD PrintLeftMargin, PrintRightMargin;
USHORT Printlmage;
USHORT PrintAspect;
USHORT PrintShade;
WORD PrintThreshold;
USHORT PaperSize;
UWORD PaperLength;
USHORT PaperType;

The meanings of the fields in the Preferences structure are as follows:

Other Features 217



FontHeighi
This variable will contain one of two constants: TOPAZJSIXTY or
TOPAZ JEIGHTY. These are the font heights required to cause the default
Topaz font to be rendered in either 60- or 80-column mode wherever the default
font is requested.

PrinterPort
This is set to either PARALLEL_PRINTER or SERIAL_PRINTER to describe
which type of printer is attached to the printer port.

BaudRate
This can be set to any of these default baud rates. See appendix B for a com-
plete list of the definitions you might find in this variable.

KeyRptSpeed, KeyRptDelay
These are timeval structures, which have two components, seconds and
microseconds. KeyRptDelay describes how long the system hesitates before
the input device starts repeating the keys. KeyRptSpeed describes the time
between repeats of the key.

DoubleClick
This is a timeval structure that describes the maximum time allowable between
clicks of the mouse button for the operation to be considered a double-click
operation. See chapter 10, "Keyboard and Mouse," for details about double-
clicking.

PointerMatr ixpOINTERSIZE]
This contains the sprite data for the Intuition pointer.

XOffset, YOffset
This describes the offsets from the upper left corner of the pointer image to the
pointer's active spot.

colorl7, colorl8, colorl9
These are the colors of the Intuition pointer.

PointerTicks
This describes how many ticks are required for the mouse to move one incre-
ment. This should always be a power of two. The Preferences tool allows it to
be set to 1, 2, or 4. Setting it to greater than 4 is not advised. For instance, if
PointerTicks is set to 32768, to move the pointer from the bottom to the top
of the screen the user would have to move the mouse more than a mile.

218 Other Features



colorO, colorl, color2, color3
These are the Workbench colors.

ViewXOffset, ViewYOffset
These describe the offset of the View from its initial start-up position. This
configurable offset allows the user to position the display on his monitor.

ViewInitX, ViewInitY
These have copies of the initial View values, as created by the graphics library.

EnableCLI
This Boolean value describes whether or not the Workbench should display the
CLI icon when the CLI tool is available.

PrinterType
These are the definitions of the available printer types. See appendix B for a
complete list of the definitions you might find in this variable.

PrinterFiIename[FILENAME_SIZE]
The default name for the disk-based printer configuration file is kept in this
buffer.

PrintPitch, PrintQuality, PrintSpacing
These describe the pitch, print quality, and page spacing for printer drivers.

PrintLeftMargin, PrintRightMargin
The character spacing of the print margins are described by these variables.

Printlmage, PrintAspect, PrintShade
The values of these variables tell printer drivers about the desired type of page
imagery.

PrintThreshold
For simple black/white printer dumps, this describes the intensity threshold
required to trigger a print of a pixel.

PaperSize, PaperLength, PaperType
These describe the user's choice of printer paper.

Other Features 219



PREFERENCES FUNCTIONS

Your program can use the following functions to check the current Preferences settings.

GetPrefs(PrefBuffer, Size)

Gets a copy of the current Preferences data.
PrefBuffer - pointer to the memory buffer to receive the Preferences
data
Size - number of bytes to copy to the buffer

GetDefPrefs(PrefBuSfer, Size)

Gets a copy of the default Preferences data.
PrefBuffer - pointer to the memory buffer to receive the Preferences
data
Size - number of bytes to copy to the buffer

Remaking the ViewPorts

This section is for advanced programmers who are interested in controlling their custom
screens directly and want to control the entire Intuition display.

There are two functions that operate on the entire display—RethinkDisplayQ and
RemakeDisplayQ. The MakeScreen() function works only with the Copper lists of
your custom screen.

RetHnkDisplay() reworks Intuition's internal state data, rethinks the relationship of
all of the screen ViewPorts to one another and reconstructs the entire Intuition display
by calling the graphics primitives MrgCopQ and LoadViewQ. This includes all the
screens in the display, not just the ones controlled by your program. It is especially
handy if you are creating custom screens and want to make up your own lists of Copper
instructions for handling the display. For more information about the Copper, see the
Amiga ROM Kernel Manual and the Amiga Hardware Reference Manual.

RethinkDisplayQ makes calls to the graphics primitives MrgCopQ and LoadView(),
which causes the display of Intuition's screens to be reconstructed. MrgCop() merges
all the various Copper instructions for different ViewPorts of the display into a single
instruction stream. This creates a complete set of instructions for each display field
(complete scanning of the video beam from top to bottom of the video display).
LoadViewQ uses this merged Copper instruction list to create the display. Before

220 Other Features



calling RethinkDisplayQ, you may wish to call MakeScreenQ to create the Copper
instruction list for your own custom screens.

Note that RethinkDispIayQ can take several milliseconds to run, and it locks out all
other tasks while it runs. This can seriously degrade the performance of the multitask-
ing Executive, so do not use this routine lightly.

The function RemakeDisplay reconstructs the entire Intuition display. It calls
MakeScreenQ for every screen in the system and then calls RethinkDisplayQ. As
with RethinkDisplayQ, RemakeDispIayQ can take several milliseconds to run, and it
locks out all other tasks while it runs. This can seriously degrade the performance of the
multitasking Executive, so do not use this routine lightly.

To remake the Copper lists of your custom screen, call MakeScreenQ. The only
difference between MakeScreenQ and the graphics library routine MakeVPortQ is
that Intuition synchronizes your call to MakeVPortQ with any calls that it needs to
make.

Current Time Values

The function CurrentTimeQ gets the current time values. To use this function, you
first declare the variables Seconds and Micros. Then, when you call the function, the
current time is copied into the argument pointers. The synopsis of this function is:

ULONG Seconds, Micros;
CurrentTime(&Seconds,&Micros);

Flashing the Display

Because the Amiga has no internal bell or beeper, the screen-flashing function is supplied
to notify the user of some event that is not serious enough to require a requester. For
example, Intuition uses this function when the user types an invalid character into an
integer gadget. This function flashes the background color of the screen. If the argu-
ment to the function is NULL, every screen in the display is flashed. The synopsis of
this function is:

DisplayBeep (Screen);

Other Features 221



Using Sprites in Intuition Windows and Screens

Sprites do not behave well under Intuition, except in somewhat limited cases. The
hardware and graphics library sprite systems manage sprites independently of the Intui-
tion display. In particular:

o Sprites cannot be "attached" to any particular screen. Instead, they always
appear in front of every screen.

o When a screen is moved, the sprites do not automatically move with it. The
sprites move to their correct locations only when the appropriate function is
called (either DrawGListQ or MoveSpriteQ).

Hardware sprites are of limited use under the Intuition paradigm. They travel out of
windows and out of screens, unlike all other Intuition mechanisms (except the Intuition
pointer, which is meant to be global).

Assembly Language Conventions

In all Intuition routines, the arguments always follow the same order: addresses first,
data second. The registers are allocated in ascending order from register 0 (always).
Thus, you can look at any routine, start from register AO if the routine's arguments
start with an address, and start from DO when the routine's arguments become data
values. As an added mnemonic, even the register names are in alphabetical order—AO
precedes DO. The register names for each function are given in appendix A.

Unfortunately for assembly programmers, many of you will have to use assemblers that
do not give you macros to declare and reference structure" elements. If this is the case,
you should use the include file called intuition.i, in which every Intuition structure vari-
able has a unique name, found in assembler format.

222 Other Features



Chapter 12

STYLE

This chapter describes some important aspects of Intuition style. If you adhere to these
style notes, you will help to ensure that Intuition applications present a consistent inter-
face to the user. Try to exercise all of the suggestions in this chapter.

Style 223



Menu Style

Alwiys make sore that you use OSMenuQ when an item becomes meaningless or non-
functional. Do not ever let fche user select something and then have the application do
nothing in response. Always take away the user's ability to select that item.

The pens you set when you open a window are used to render the menu bar and the
items. If you are opcjing multiple windows, you might consider color-coding the window
frames and menus.

PROJECT MENUS

If you are going to allow the user to select which project to work with, you should create
a "Project" menu. For consistency, it is suggested that everyone create their menu
strips with the Project menu as the leftmost menu, This menu should contain the items
shown in table 12-1. If possible, the items should be in the order shown.

Table 12-1: Project Menus

Menu • -
Item Function

NEW Creates a project

OPEN Gets back a project previously saved

SAVE Saves the current project to the disk

SAVE AS Saves the current project using a different name

PRINT Prints the entire project

PRINT AS Prints part of a project or selects other than the
default printer settings

QUIT Stops the program (If the project was modified,
ask if the user wants to save the work.)

224 Style



EDIT MENUS

If your application can perform edit-like functions, it is suggested that you create an
"Edit" menu, which should appear to the right of the Project menu. It should contain
the items shown in table 12-2. If possible, the items should be in the order shown in the
table.

Table 12-2: Edit Menus

Menu
Item

UNDO

CUT

COPY

PASTE

ERASE

Function

Undoes the previous operation (if possible;
if not, disable this option!)

Removes the selected portion of the project
and puts it in the Clipboard

Puts a copy of the selected bit of the project
in the Clipboard

Puts a copy of the Clipboard into the project

Removes the selected bit without putting it
into the Clipboard

Gadget Style

When creating a list of gadgets, in a requester or perhaps a window, be sure to design
bolder, more eye-catching imagery for the obvious or safe choice. For example, note how
the CANCEL choice is highlighted in figure 12-1.

Style 225



Overlapping the select boxes of gadgets is in general not a good thing to do. This is
especially true when it is not obvious to users which gadget they are selecting. Unless
you are very careful, all sorts of weird things can happen and the gadgets will behave in
unusual ways.

As with menus, use OffGadgetQ to remove a gadget when it becomes meaningless or
nonfunctional.

I

Figure 12-1: The Dreaded Erase-Disk Requester

226 Style



Requester Style

This is easily the most important rule about requ
safe way to exit from any requester. In figure II <
requester can be cancelled; in fact, the "run away
If, for instance, the user accidentally selected the
CANCEL option saves the day. This is extremeh
point strongly enough.

ors: always make sure that there is a
. notice tnat the dire "ERASE DISK"

option is rendered in bolder imagery.
CIASE DISK option from a menu, the

.rnportant. We cannot emphasize this

When you design a requester with your own 1 Map imagery, make sure that the
imagery works well with the select boxes of the gac get list that you supply.

Command Key Style

Treat the AMIGA keys like SHIFT keys. To en ^ a shortcut, users should be able to
hold down the AMIGA key with the little finger one hand, and press one of the keys
they would normally press with the other hand. -iis will help touch typists as well as
prevent that clumsy feeling that everyone experiem .

Table 12-3 shows recommendations for standa selection shortcuts (using tlie left
AMIGA key to emulate usage of the left button o; ? mouse):



Key Pressed with
Left AMIGA Key

o

p

J

K

L

N

M

Table 12-3: Selection Shortcuts

Function

"Select a small piece to the right of the cursor," -
such as the next word

"Select a bigger piece to the right of the cursor,"
such as the next sentence

"Select an even bigger piece to the right of the cursor,"
such as the next paragraph

"Select a small piece to the left of the cursor,"
such as the previous word

"Select a bigger piece to the left of the cursor,"
such as the previous sentence

"Select an even bigger piece to the left of the cursor,"
such as the previous paragraph

Bring the Workbench to the front (this is automatically
trapped by Intuition)

Send the Workbench to the back (this is automatically
trapped by Intuition)

Table 12-4 shows recommendations for standard information (menu) shortcuts (using the
right AMIGA key to emulate usage of the right button of the mouse):

228 Style



Table 12-4: Information (Menu) Shortcuts

Key Pressed with
Right AMIGA Key

X
C

P

I
B

U

P

Q

s

Function v

Cut

Copy

Paste

Change font type to italic

Change font type to bold

Change font mode to underline

Reset font characteristics to
plain defaults

Undo (cancel)

Save

Mouse Style

Intuition uses the left mouse button for selection and the right mouse button for infor-
mation transfer. To help the user understand and remember the elements of every
application, you are encouraged to follow this model.

When the user presses the left button, Intuition examines the state of the system and
the position of the pointer and uses this information to decide if the user is trying to
select some object, operation, or option. For example, the user positions the pointer over
a gadget and then presses the left button to select that gadget. If the user moves the
mouse while holding down the select button, this sometimes means that the user wants
to select everything that the pointer moves over while the button is still pressed.

Most often, Intuition uses the right button for menu operations. Pressing the right but-
ton usually displays the active window's menu bar over the screen title bar. Moving the
mouse while holding down the right button sometimes means that the user wishes to
browse through all available information — for example, browsing through the menus.
Double-clicking the right mouse button can bring up a special requester for extended
exchange of information. Because this requester is used for the transfer of information,
it is appropriate to use the right mouse button.

Style 229



If you are planning to handle mouse button events directly, you should follow the
selection/information model described above.

The Sides of Good and Bad

Whenever the user is presented with a pair of choices that could be characterized as
positive/negative opti is, the positive option should always appear on the left and the
negative option on the right. For example, if you are designing a requester with "OK!"
and "CANCEL" options, "OK!" should appear on the left and "CANCEL" on the right.
If your options are "RETRY" and "ABORT," you should render "RETRY" on the left
and "ABORT" on the right.

Intuition's AutoRequestQ requester and DisplayAlertQ alert both use this scheme. If
all programs mimic this design, the user will come to feel secure in knowing that the
right button can always be used to abort some dire sequence of events while the left but-
ton selects the normal, placid continuation of events. Refer to figures 1-4, 7-2, and 12-1
for examples.

Miscellaneous Style Notes

Remember, exiting programs should always make a call to OpenWorkBenchQ, even if
you did not call CloseWorkBenchQ. Workbench should be open as much as possible.
If Workbench was closed and your departure has freed up enough memory for Work-
bench to reopen, it is preferable that it be reopened. OpenWorkBench() will not
necessarily work (if there is no memory for the display, it will not open). But if every
program calls OpenWorkBenchQ, then Workbench will open if it can. By using this
mechanism, you can help give the user a consistent environment. Intuition always
checks to see if Workbench must open whenever any screen is closed.

As much as possible, allow the user to configure the parameters of your program. For
instance, if you have opened a custom screen, let the user change the colors. If your pro-
gram makes sound, give the user the ability to adjust the tone and volume. Do not
make the configuration a requirement, however, and always give the user an avenue for
restoring the defaults.

The Intuition default pointer is designed with the light source coming from the top
right. If you design your own pointer, consider mimicking this. Most importantly, here
are the color assignments used for the Intuition pointer sprite data:

230 Style



o Color 0 is transparent.

o Color 1 of the sprite (hardware color register 17) is the color with medium inten-
sity, v

o Color 2 of the sprite (hardware color register 18) is low intensity.

o Color 3 of the sprite (hardware color register 19) is high intensity.

Your pointer should be framed by either color 1 or color 3.

Since the Intuition pointer is always hardware sprite zero, you can set the colors of the
pointer by calling the SetRGB4() function on the Viewport of any screen. An exam-
ple of this follows:

struct Screen *MyScreen;

SetRGB4(&MyScreen->ViewPort, 17, Redl7, Greenl7, E!uel7);
SetRGB4(&MyScreen->ViewPort, 18, Redl8, Greenl8, Bluel8);
SetRGB4(&MyScreen->ViewPort, 19, Redl9, Greenl9, Bluel9);

A Final Note on Style

Design beautiful Gadgets, Menus, Requesters. Think simplicity and elegance. Always
remember the fourth grader, the sophisticated user, and the poor soul who is terrified of
breaking the machine.

Dare to be gorgeous and unique. But don't ever be cryptic or otherwise unfathomable.
Make it unforgettably great.

Style 231


